Showing posts with label intrusions. Show all posts
Showing posts with label intrusions. Show all posts

Monday, 16 January 2017

Blog Update #11 - More rocks in our region

Not a lot to mention as far as the blog goes at this point, except that I've added photographs of three more stratigraphic units to the Rocks of the Region page. These are three of the many 'granites' in the Armidale district:

Gara Monzogranite --- Fickr Photos --- Stratigraphic Names Database
Glenburnie Leucomonzogranite --- Flickr Photos --- Stratigraphic Names Database; and
Rockvale Monzogranite --- Flickr Photos --- Stratigraphic Names Database
Typical landscape and outcrop characteristics of the Rockvale Monzogranite, Wollomombi area

On another note, while visiting a friends property near Armidale I observed a brecciated jasper in the Sandon Beds. I was aware of an abundance of jasper beds (red chert) in the region ever since my university days, however, I'd never seen a brecciated type and this was quite attractive. More to come in a week or so.

Saturday, 9 January 2016

A Rock of Gibraltar Range National Park - Part 2

Dandahra Creek Leucogranite
This post is a follow-on from an earlier post which can be read here.

The Dandahra Creek Leucogranite is mainly composed of granite which is depleted in dark (mafic) minerals. The crystals are of very similar size and medium to coarse grained. The crystals are mainly quartz with feldspars and occasional biotite mica. The term Leuco- simply refers to the light colour and lack of mafic minerals. There are also small amounts of other minerals that are disseminated through the rock these include the mineral zircon which is used for dating.

The dating of the Dandahra Creek Leucogranite was only conducted in the last couple of years. It is an example of using multiple techniques together to get an answer. The mineral Zircon is formed in magma chambers of granite and granite-like composition. This is a very stable mineral. Zircon locks up uranium in small amounts and this uranium undergoes radioactive decay to lead. By measuring the proportions of uranium to lead it is possible to determine how long ago the zircon had formed. In the past in some cases the whole zircon crystal have been used to determine the ratio. However, this method has some complications.

Not all of the zircon crystals in rocks show the same age. In the case of the Dandahra Creek Leucogranite some seemingly having much older ages. These crystals are actually inherited from the parent rock. The stability of the zircons means that they have not fully melted in the magma chamber. Often a good way to determine if a zircon is older than the magma chamber is to look at the shape and determine whether there has been any melting of the edges of the crystal. However, sometimes it is very hard to tell because the zircon often builds itself up again with an old core and a new crystal face.

To overcome the problem of age zoning in zircon crystals an alternative method was developed measure the ratio of lead and uranium. A high accuracy ion beam is aimed at the different portions of crystal. The ion beam vaporises the elements in that tiny area. The vapour is then measured for the abundance of each element and then the ratio of elements can be calculated. This is called the Sensitive High Resolution Ion Micro Probe or SHRIMP.

SHRIMP was a method developed right here in Australia. It is regarded as one of the most reliable ways to analyse microscopic crystals to determine when and how they formed. The need for the special machine came from dating the Rocks that make up the oldest parts of Western Australia which are the oldest in the world. It has no become a recognised tool around the world (Ireland et al 2008). There are 20 SHRIMP analysers around the world with four built in the last couple of years in Japan, China and Poland. Like Wi-Fi, the Hills-Hoist and Pavlova it is another example of Australian scientific ingenuity.

The age of the intrusion given for the Dandahra Creek Leucogranite using the SHRIMP method is 237.6 Ma (plus or minus 1.8Ma). This makes it the youngest example of the Stanthorpe Suite of Granites (Chisholm et al 2014) and nearly the youngest in the whole Standthorpe Supersuite (Thanks for the correction rockdoc!).

References.Bibliography:

*Chisholm, E.I., Blevin, P.L. and Simpson, C.J. 2014. New SHRIMP U–Pb zircon ages from the New England Orogen, New South Wales: July 2012–June 2014. Record 2014/52. Geoscience Australia

*Clarke, Peter J. & Myerscough, Peter J. 2006. Introduction to the Biology and Ecology of Gibraltar Range National Park and Adjacent areas: Patterns, Processes and Prospects. Proceedings of the Linnean Society of New South Wales

*New South Wales National Parks and Wildlife Service 2005. Gibraltar Range Group of National Parks (Incorporating Barool, Capoompeta, Gibraltar Range, Nymboida and Washpool National Parks and Nymboida and Washpool State Conservation Areas) Plan of Management. February 2005. ISBN 0 7313 6861 4

*Ireland, T.R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., Lanc, P., Schram, N. & Williams, I. S. (2008), "Development of SHRIMP", Australian Journal of Earth Sciences V55 p937–954

Monday, 21 September 2015

Cooking the rocks at Emerald Beach

I have always been interested in the little things in life. The things that don’t get the attention that everything else seems to get. This even applies to rocks and rock outcrops. It applies to a little headland that I visited on a trip to Coffs Harbour earlier this year. The headland has no name but lies on the northern side of Emerald Beach and the village of the same name. It is made from a granite-like rock of a poorly understood suite of intrusions in north eastern NSW.

Boulder on Emerald Beach. Note the xenolith at the bottom
The rock is formally called the Emerald Beach Monzogranite. It is the eastern most granite on the Australian continent is also one of the youngest rocks in the New England area. The Emerald Beach Monzogranite has been dated at 228.5Ma and part of an informally super suite of granites called the Coastal Supersuite (Chisholm et al 2014). Originally the unit was formerly defined as the Emerald Beach Adamellite (Korsch 1978) but has been renamed to reflect the most up-to-date nomenclature. However, the name Monzonite (and hence Adamellite) is misleading. The composition of the rock is consistent with the definition of Granodiorite (Plagioclase Feldspar abundance greater than that of Potassium Feldspar (Korsch 1971, Chisholm et al 2014). No reference to Monzogranite (or Adamellite) have been made and the samples I’ve seen were plagioclase feldspar dominant so the present classification appears erroneous. Maybe the name Emerald Beach Granodiorite might be more correct.

The dating of the Emerald Beach Monzogranite was only conducted in the last couple of years. It is an example of using multiple techniques together to get an answer. The mineral Zircon is formed in magma chambers of granite and granite-like composition. This is a very stable mineral. Zircon locks up uranium in small amounts and this uranium undergoes radioactive decay to lead. By measuring the proportions of uranium to lead it is possible to determine how long ago the zircon had formed. By this method Chisholm et al 2014 narrowed the age down to about 228.5 million years old. This is the Upper Triassic era which was the time of the best known dinosaurs.


Xenoliths of country rock are present in the rock (you can see an example in the picture above). These darker coloured xenoliths are inclusions of country rock which has been caught up in the magma chamber and have not quite been completely melted into the rest of the liquid rock. In the case of the Emerald Beach Monzonite the xenoliths are slightly elongated and display a preferred orientation. This orientation is probably caused by following the direction of intrusion of the molten rock (Korsch 1971).

The intrusion of the magma heated up the surrounding rock into which it had been emplaced. This heating up forms what is termed a contact metamorphic aureole (a metamorphic zone of effect). The Emerald Creek Monzonite had heated the muds in the surrounding deep sea Coramba Bed rocks to such an extent that new minerals were formed including very small but abundant crystals of biotite mica. Biotite mica forms at approximately 500 degrees Celsius (but varies by pressure) and disintegrates when hotter than about 800 degrees. Therefore the temperature of the molten rock was probably at least this. This type of contact metamorphic rock is referred to as hornfels.

It is an interesting example how little aspects again can tell a lot about how rock forms. Preferred orientation of xenolith inclusions and the formation of biotite in the surrounding rock show both the direction that the magma was moving and its temperature at the time. Have a look if you are in the area and see if you can spot some of the xenoliths. Those that are really in the know can say that the Emerald Creek Monzonite seems to have been incorrectly named.

References/Bibliography:

*Chisholm, E.I., Blevin, P.L. and Simpson, C.J. 2014. New SHRIMP U–Pb zircon ages from the New England Orogen, New South Wales: July 2012–June 2014. Record 2014/52. Geoscience Australia
*Korsch, R.J. 1971. Palaeozoic Sedimentology and Igneous Geology of the Woolgoolga District, North Coast, New South Wales. Journal and Proceedings of the Royal Society of New South Wales. Vol. 104.
*Korsch, R.J. 1978. Stratigraphic and Igneous Units in the Rockvale-Coffs Harbour Region, Northern New South Wales. Journal and Proceedings of the Royal Society of New South Wales. Vol. 111.

Monday, 6 October 2014

Rocks in the Rocky River

Rocky River Monzogranite (Bungulla Suite).
The Monzogranite here contains large crystals of twinned pink K-feldspar.
The Rocky River Road is a very quiet, scenic and out of the way route to travel. It is slow and windy, but a pretty alternative to the Bruxner Highway route between Drake and Tenterfield. I had the pleasure of a trip along Long Gully Road and Rocky River Road just last week. I enjoyed it very much for the scenery and the clear water of the Rocky River (also known as the Timbarra River). The area is also very interesting in a geological sense. The rock that is found along Rocky River Road (the Rocky River Monzogranite) is actually remnants of outer part of a very large batholith that makes up Timbarra Tableland.

Previously, understanding of the inner rocks of the Timbarra Tableland were incorrectly thought to be Moonbi Supersuite, while the outer rocks were correctly part of the Stanthorpe Supersuite. Having two parts of an intrusion being apparently related to different Suites was all quite confused. Mustard (2004) suggested an informal renaming of the Bungulla Monzogranite in the area of Rocky River to the Rocky River Monzogranite. The Rocky River Monzogranite would in turn be part of the Bungulla Suite. The Bungulla Suite being rocks that are I-type (derived from melted igneous rocks) of the Stanthorpe Supersuite.  Although the nomenclature by Mustard (2004) was suggested as informal it is quite reasonable to adopt the name of Rocky Creek Monzogranite as formal. The previous identification of some rocks in the Timbarra Tableland as Moonbi Supersuite has since been shown to be incorrect - they are all Stanthorpe Supersuite.

The Rocky River Monzogranite is in the extensive eastern edge of the Timbarra Tablelands. It is comprised mainly of the rock monzogranite. This rock is comprised of abundant quartz and roughly equal proportions of plagioclase feldspar (sodium and calcium feldspar) and potassium feldspar. There are also smaller amounts of dark biotite mica and amphibole in the rock. The Rocky River Monzogranite is quite a course grained and the crystals are very, very large. The monzonite is notable as it has many 'inclusions' called xenoliths. These are blobs of rock are of a less granitic composition. They are very, very common in some areas as the rock comprises of about 10% or more xenoliths. The xenoliths indicate that mixing of different composition magmas was occurring when the intrusion formed.

A monzogranite tor in the sandy bed of the Rocky River.
Note different sized irregular shaped xenoliths.
Along the very margin of the intrusion (I didn't get to see this) the crystals are smaller in size and the feldspars are even more potassium rich forming the rock syenite. The central area of the Timbarra tablelands is comprised of granitic rocks that were high in fluids when the rock was crystallizing. These fluids (formed by residual enrichment of the original magma chamber), has resulted in the concentration of metals, most notably gold (Mustard 2004). The Timbarra gold mine targeted this inner zone of the tablelands as the outer granite (Rocky Creek Monzogranite) do not contain nearly as much gold. The erosion of the gold has led to alluvial gold deposits in the Rocky River and Clarence Rivers but the gold is very fine grained so fossickers panning can be tricky.

The many components of the Timbarra tablelands intrusion were emplaced in the Triassic period. They intruded the Drake Volcanics. The size of the granite plutons has caused significant contact metamorphism, creating a large metamorphic aureole around the intrusion.

There is much more to say about the zones in the Timbarra tablelands intrusion described by Mustard (2004). This includes the neatness of the tablelands cross section, the way that the slightly different granites tapped different parts of a deeper magma chamber and the way that differentiation of granite types occurred are all worthy of a discussion. Though, this needs more than just a few paragraphs and so I will have to cover these matters in future posts. In the mean time I hope this post gives a taste for some of the 'granite'.

References/bibliography:
*Mustard, R. 2004. Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales. Australian Journal of Earth Sciences, 51.

Wednesday, 23 July 2014

The Great Dividing Ranges and Stonehenge

Granites occur throughout much of the north coast and New England region. I use the term granite here loosely, in reality the rocks I’m referring to have a range of compositions and ages. The things they have in common are their relatively high quartz content and they are igneous intrusive (plutonic) rocks. They have cooled slowly and therefore have allowed large crystals to form – giving them that typical granite appearance. I’ve covered a few granites in previous blog posts but in this post I’ll cover one New England “granite” called the Wards Mistake Monzogranite. I’ll continue to cover others in future posts.

Stratigraphically the Wards Mistake Monzogranite is part of the Wards Mistake Suite which in turn is part of the Uralla Supersuite. The Wards Mistake Monzogranite outcrops in a relatively extensive area between Glen Innes and Guyra. In places it straddles the Great Dividing Range but mainly occurs just on the eastern side within the upper reaches of many Clarence River tributaries. The unit was formed around 250million years ago, during the Lower Triassic to Lopingian (early Permian period).

The Wards Mistake Monzogranite consists of monzonite (a rock containing moderate quartz with equal parts potassium and sodium-calcium feldspar) with some granodiorite (abundant quartz and calcium-sodium feldspar). It has a typical equigranular black and white speckled appearance which is common of the Uralla Supersuite. It is like the other Uralla Supersuite granites as it is derived from the melting of other igneous rocks - I-Type Granites (Bryant et al 2003). However, it does contain some xenoliths (inclusions of other rock) which are sedimentary. It is possible that when the Wards Mistake Monzogranite was emplaced into the crust it incorporated bits of the surrounding sedimentary rock. This may have affected the chemistry of the magma and may be one of the reasons why there is both monzonite and granodiorite in the unit.

Typical tor outcrops of the Wards Mistake Monzogranite near Glen Innes
Many New England granites contain mineral deposits. Being an I-Type granite usually means a good chance of mineral deposit formation. However, the Wards Mistake Monzonite contains very sparse mineralisation with only a few small areas where there is some alteration zones that have more concentrated ore minerals. These include wolframite (tungsten), molybdenite (molybdenum) and cassiterite (tin) (Brown 1997). Other surrounding granites such as the Kingsgate Granite and Red Range Leucogranite have abundant mineralisation that was historically mined and is still under active mineral exploration permits.

A lovely feature of most New England granites is the interaction with the climate. This produces wonderful looking granite tors. This is a result of onion skin weathering (frost wedging) where water penetrates into the rock and freezes during the cold winters. This repeated action causes large flakes of rock to peel off. Some of these Tors are given their own names. In the Stonehenge area on the New England Highway you can stop and walk among these Tors and see the Balancing Rock which looks like it will topple over at any moment.

The landscape around Stonehenge between Guyra and Glen Innes is my favourite landscape in Australia. The high country agriculture, the cold weather and the geological conditions that form the rolling hills and special tors make it a special place. The picture above is of a portion of the Wards Mistake Monzogranite and partly shows the landscape I’m talking about. The accessibility of the granite is certainly worth a quick stop if you are travelling on the New England highway.

References/bibliography:

*Barnes, R.G , Willis, I.L. 1989. Preliminary geological plan of the 1:250 000 Grafton-Maclean sheet area - SH 56-6, SH 56-7. New South Wales Geological Survey Report

*Brown, R.E. 1997. Mineral deposits of the Glen Innes 1:100 000 map sheet area. Geological Survey of New South Wales. Quarterly Notes 103 p1-19

*Bryant, C.J. , Chappell, B.W. , Blevin, P.L. 2003. Granites of the southern New England orogeny. In Blevin, P. et al (eds) Magmas to Mineralisation: the Ishihara Symposium Geoscience Australia. Record 14 - extended abstracts.

Sunday, 1 September 2013

The right age for Mount Warning

In previous posts on the Tweed Volcano, especially those relating to the Mount Warning Central Complex I indicated that there were some strange anomalies to do with the dating of these intrusions. Graham (1990), in his natural history summary of the Tweed region illustrated how confusing the dates recorded for the rocks that made up the Mount Warning Central Complex could be.

Mount Warning Central Complex from the southern rim of eroded shield
Wellman and McDougall (1974) summarised existing and provided new evidence for the date of the Mount Warning Central Complex and the surrounding Lamington Volcanics. Wellman and McDougall (1974) and earlier researchers used a very good technique of dating called potassium-argon dating (K-Ar dating). This is a radiometric dating method based on measurement of the radioactive decay of an isotope of potassium (40K) into argon (40Ar). Note, that the numbers in front of the chemical symbol for each element refers to the number of neutrons in the atoms nucleus. The decay rate of 40K to 40Ar is known accurately because the time it takes for half of the 40K to turn into 40 Ar is about 1.25billion years (the half-life). Therefore, the ratio of the two can be used to determine just how old the rock is.

The accuracy of using the K-Ar dating method is very good, but has some provisos. The most important being that the rock sample must be very 'fresh'. There must be no weathering, alteration or metamorphism of the sample. Because potassium is more reactive than argon and it can be removed or added respectively during weathering and alteration. Additionally, the K-Ar dating 'clock' can be reset during any recrystallisation during metamorphism.

K-Ar dating by Wellman and McDougall (1974) and earlier authors showed that the intrusive complex at Mount Warning was emplaced between ~23.7Ma and 23.0Ma and the surrounding lavas erupted from ~22.3Ma to ~20.5Ma. This doesn't make a lot of sense because an intrusion of magma needs to intrude into something else (otherwise it is not an intrusion!). In the case of shield volcanoes this intrudes the earlier lava that was erupted before. The K-Ar dating shows this is apparently not the case.

What is going on? No one could suggest any reasonable ideas. Cotter (1998) suggested a possibility there may have been a large volume of pre-existing Palaeozoic and/or Mesozoic sedimentary rocks that have now been eroded away. However, Cotter (1998) did date a sample of basalt lava from the Terania Creek area at ~23.9Ma (using K-Ar). This suggested maybe the dating by Wellman and McDougall (1974) and earlier authors might have either missed later lavas or maybe there was something else wrong.

Cohen (2007) spent a lot of time resampling the K-Ar dated volcanic rocks of eastern Australia. This time instead of using K-Ar he used another technique called 40Ar-39Ar dating. This is similar to K-Ar dating in concept. It instead measures the abundance of two isotopes of argon and is much less affected by any effects of weathering and alteration (though not metamorphism). What did he find? He found some of the K-Ar dates were wrong.

Cohen (2007) found the actual date of the lavas was within the range ~24.3 to ~23.6 million years, about 2 million years older than first thought. Though the 40Ar-39Ar date of the Mount Warning Central Complex was quite close at ~23.1Ma it fell within the range of the K-Ar dating (23.7-23.0Ma). This reverses the idea the intrusion of the Mount Warning Central Complex was before the lavas. So, now we know that the final intrusions of the Mount Warning Central Complex does indeed fit the model for shield volcanoes. That is, the intrusions were likely to have been emplaced into already erupted volcanic rock. They were also erupted and emplaced over a period much quicker than first thought. The new dating shows volcanism possibly lasting 1 million years instead of the 3 million previously suggested.

References/bibliography

*Cohen, B.E. 2007. High-resolution 40Ar/39Ar Geochronology of Intraplate Volcanism in Eastern Australia. PhD Thesis, University of Queensland.
*Cotter, S. 1998. A Geochemical, Palaeomagnetic and Geomorphological Investigation of the Tertiary Volcanic Sequence of North Eastern New South Wales. Masters Thesis, Southern Cross University.
*Graham, B.W. 1990. A Natural History - Tweed Gold Coast Region. Tweed River High School Library.
*Wellman, P. & McDougall, I. 1974. Potassium-argon Dates on the Cainozoic Volcanic Rocks of New South Wales. Journal of the Geological Society of Australia v21.

Sunday, 11 November 2012

In the hills of Valla and Nambucca Heads

The Valla Adamellite now termed the Valla Monzogranite to reflect modern naming conventions is an interesting small to medium sized intrusion about 10km north east of Nambucca Heads. It is one of the suites of coastal granites which are mostly I-Types (melted igneous material), this means that the coastal granites show abundances of ore minerals within the granite or in the surrounding metamorphosed country rocks. A monzogranite is a granite with roughly equal proportions of (alkali-feldspar (potassium and sodium rich) and plagioclase feldspar (calcium rich)). The monzogranite is thought to have formed during the Triassic period.

The metamorphic aureole for the Valla Monzogranite is actually quite interesting as it shows a classic zonation of metamorphism (high grade at the contact grading to low grade further away) and also excellent examples of mineral zonation associated with metasomatism (hot-water or fluid alteration of rock). The Valla Monzogranite has been shown to be associated with gold, silver, arsenic and molybdenum mineralisation (as well as others). The rock that the monzogranite has been intruded into is called the Nambucca Beds which are part of the Nambucca Block. The Nambucca Beds are Permian to Carboniferous in age and are mainly comprised of the regionally metamorphic rock type called phyllite which was originally deposited on the sea floor. The Nambucca Block was accreted onto the Australian continent in the New England Orogen and this caused the regional metamorphism of the beds.

The Nambucca Beds are intruded by the Monzogranite. The Beds are extensive and
extend far into the rugged Nambucca Hinterland. This photo is west of Bowraville.
The Valla Monzogranite seems to be a Climax Molybdenum Deposit named after the Climax Mine in North America. This means that when the Monzogranite was cooling the upper portion of the pluton became residually enriched with fluids, metals and silica. These fluids cause alteration of the upper portion of the pluton forming what is called greisen and also are injected into the surrounding rock through veins and sometimes aggressively through breccia pipes. One of the first minerals to form in these veins is silica, quartz with metal sulphide such as molybdenite (molybdenum ore) and wolframite (tungsten ore). Further away from the intrusion the degree of alteration becomes less grading through potassic through to argillic which are defined alteration zones based on the changes in the rock forming minerals. As the degree of alteration becomes less so the types of metal ores change with increasing amounts or arsenic, gold and silver. Further out in the alteration zone minerals such as galena form (lead ore) and finally stibnite (antimony ore). These ore deposits seem to be fairly common in the New England area with Glen Eden being the most studied (Somarin 2001, Somarin & Ashley 2004) and have in some areas been extensively explored such as Kingsgate east of Glen Innes.

Some attempts of mining have occurred in the Valla Monzogranite in the past, the most significant being the Valla Gold mine which was located just to the north of Valla Beach. The mine was abandoned with very little rehabilitation and therefore has become an environmental problem for the local creek. However, rehabilitation efforts have recently been undertaken, though these will need another post to discuss in more detail.

References/bibliography:

*Somarin, A.K. 2011. Petrography, Geochemistry, and Petrogenesis of Late-Stage Granites: An Example from the Glen Eden Area, New South Wales, Australia. Earth and Environmental Sciences.
*Somarin, A.K. & Ashley, P.M. 2004. Hydrothermal Alteration and Mineralisation of the Glen Eden Mo-W-Sn deposit: A Leucogranite related hydrothermal system, southern New England Orogen, NSW, Australia. Mineralium Deposita.

Saturday, 29 September 2012

The Dummy you'll find north of Armidale

One of the imposing landscape features on the north side of Armidale is the 1400m high Mount Duval. Some of my secondary education was in Armidale and I remember that the logo of my school actually had Mount Duval in it. Mount Duval is part of granite-like pluton called the Mount Duval Monzogranite. It was previously called the Mount Duval Adamellite; however the term Adamellite is no longer formally recognised. The intrusion actually extends in a crescent shape further to the west and includes Little Mount Duval which is roughly were the watershed for the Great Dividing Range sits, draining to the east all the way to the Macleay River. The monzogranite is considered to be middle Permian in age and intrudes several different complex rock units, one of these is a relatively small unit called the Dummy Creek Conglomerate.

Dummy Creek Conglomerate in the Sunnside area
metamorphosed by the Highlands Igneous Complex
The Dummy Creek Conglomerate is situated to the north of Mount Duval and extends to the east to the area of Puddledock, the northern side is intruded by the Highlands Igneous Complex. The Dummy Creek Conglomerate is comprised mainly of conglomerate but not exclusively. Lithic sandstone is a major component and it is actually what is in these sandstones that allow us to determine when the unit was formed, but more of that later. The abundance of conglomerate as well as sandstone and rarity of fine grained sediments like mudstones shows us that the sediments, gravels, etc that made up the Dummy Creek Conglomerate have not travelled far from their source. The clasts in the conglomerate show that the source rock was the underlying Carboniferous aged Sandon Beds (part of the Texas-Woolomin Block).

Korsch (1982) concludes that the original Sandon Beds was domed and uplifted by the intrusion of granite bodies of the New England Batholith such as the Mount Duval Monzogranite and the Highlands Igneous Complex. The hills formed from the deformation of the Sandon Beds began shedding rock, eroding and the sediments were deposited a short distance from these new hills. The intrusions continued to intrude shortly after the sediments were deposited which according to Holland (2001) created a complex system of overlapping zones of contact metamorphism. The intrusions were therefore emplaced in a very shallow crustal situation and volcanism was abundant and the Dummy Creek Conglomerate was quickly covered and preserved by a volcanic unit that is called the Annalee Pyroclastics which includes lavas, pyroclastic deposits and the like. It is worth noting that other models of formation by various other authors were summarized by Holland (2001) for instance some authors suggest that rock fabric studies may show a source only from the south.

A lot was happening in the Mount Duval-Tilbuster-Puddledock area during a relatively short period of geological time, indeed even during this time of change a substantial forest must have been growing in the area. The sandstone layers in the Dummy Creek Conglomerate preserve fairly common plant fossils. Most of the fossil remnants are fragments but there is enough to identify many plants with certainty. The most common fossil identified was the deciduous plant Gangopteris, a relative of the more commonly known Glossopteris, the main plant that formed the coal of the Sydney Basin. This plant existed abundantly in the middle of the Permian and so given that many of the rocks appeared to be forming at the same time these can be assumed to be close to this age too.

References/bibliography:

Holland, R. 2001. South western Margin and Contact Rocks of the Highlands Igneous Complex near Orana Falls, North of Armidale, NSW. Unpublished undergraduate research thesis, University of New England.
Korsch, R.J. 1982. The Dummy Creek Association: Rim Syncline Deposits. Journal and Proceedings of the Royal Society of New South Wales. V115.

Sunday, 9 September 2012

A big pluton cut by the Clarence River

Yulgibar Bridge on the Clarence River
It has been some time since I spent a lot of time in the Clarence River area but occasionally I’ve got back there. Not too long ago I travelled along the Clarence Way. I took a quick detour down Lionsville Road when I came to the village of Baryulgil. Only a few kilometres down the road there is a quaint long low thin bridge over the Clarence. Just on the opposite side is a spot reguarly used as a swimming spot, there is also a tourist attraction for geologists (A road cutting).

The road cutting and the stream bank expose boulders of ‘granite’ rock which make up part of the New England Batholith. Right there at the bridge is a great spot to see one of rocks that make up what is called the Clarence Supersuite, a suite of ‘granites’ that have been derived from the melting of older igneous rocks. According to Bryant et al (1997) the Clarence River Supersuite for which this rock is a member is a type of ‘granite’ called an I-type. The ‘I’ stands for melted igneous in origin (as apposed to S-type for melted sedimentary). There is a lot to say about the New England batholith, its different granite types and its models of formation, such that I will do several blog posts in the future to cover this topic better.

The actual pluton in this area is called the Dumbudgery Granodiorite and it extends a few more kilometres to the north and for many kilometres to the south. Good outcrops can be seen in the hills on the southern side of Lionsville Road if you continue to the west a bit further. Indeed quartz veins in this area also contain small amounts of cinnabar (mercury ore), others contain some gold. If you want to take a sample or have a look at a fresh piece, a hammer (preferably a big one) with appropriate safety goggles is required. It is hard rock! But a fresh piece of granodiorite reveals a lovely white, pink and black speckled appearance. It can be so pretty that is is worth going on display.

Dumbudgery Granodiorite, fresh samples are very bright coloured
The colours of the rock reflect the mineral composition. Normal granite has a large proportion of alkali feldspar (sodium and potassium rich) relative to the amount of plagioclase (calcium and sodium rich) feldspar. A granodiorite like the Dumbudgery Granodiorite contains more plagioclase than alkali feldspar but still enough to be common in the rock. In the specimens at the Clarence River the plagioclase is a cloudy grey colour, sometimes difficult to distinguish from the quartz (tends to clearer) but the other alkali feldspar is a lovely bright pink colour. The lighter colours are contrasted by the two black minerals which are hornblende and biotite. The hornblende is identified by its hardness relative to the biotite which is a form of mica and therefore very easy to scratch. The Dumbudgery Granodiorite has been previously dated at 249 million years (very early Triassic period which is part of the mesozoic era).

Oddly the mass of granodiorite is actually bisected by the Clarence River. This is surprising given the prominent hills (and very hard rock) that the Dumbudgery Granodiorite is made from compared with the relative softness of the Clarence-Moreton Basin sedimentary rocks a short distance to the east. I’ve discussed why it is likely and surprising that the river has created this route in a previous post. Additonally, I’ve quickly discussed in another post the nearby unusual rock called the Gordonbrook Serpentinite which was mined at Baryulgil for asbestos. The Gordonbrook Serpentinite forms the eastern contact with the Dumbugery Granodiorite in Baryulgil area.

The Clarence river here is quite wide with large sand and gravel deposits moving every time it floods and altering its course. Historically some gold was found in this sand and gravel and is thought to be mainly sourced from gold in mineralised granitic rocks further up the river and in its tributaries. Some of the little deposits in the hills and much of the river itself was mined by the old timers, around the end of the 19th Century.

The area around Baryulgil is off the beaten track and Baryulgil itself is a bit of a delapidated little community but the area is worth a visit for its wonderful scenery and geological significance given its location at the edge of the mountainous New England region and the edge of the Clarence-Moreton Basin. Apparently the swimming and fishing are lovely too.

References/bibliography:

*Bryant, C.J., Arculus, R.J., & Chappell, B.W. 1997. Clarence River Supersuite: 250Ma Cordilleran Tonalitic I-type Intrusions in Eastern Australia. Journal of Petrology V38.

Saturday, 1 September 2012

Who has heard of the Belmore Volcano?

Most of us know about the two large remnants of volcanic provinces in the region, one the Tweed Volcano and the other the Ebor Volcano. Many too will know that the Tweed Volcano erupted first (23 million years old) and as the Earths crust moved over the mantle the probable hot-spot that caused this volcano migrated further south and formed the Ebor Volcano (19 million years old). Few people will have heard of the Belmore Volcano, this is a volcanic area that is located roughly midway between the Tweed and Ebor volcanic provinces and it also erupted in the interval between the other two (21 million years).

Before I go on I should point out that the term volcano is used very loosely here as it may also consist of many active cones and vents which erupted at a similar time period and are related to each other. Indeed the definition of what a volcano is defined as (such as the terms central volcano and volcanic province) has been an on-going argument for a long period of time anyway!


Trachyte makes up Dome Mountain in the Fineflower area
The area of the Belmore Volcano is away from the main travelled routes and for that reason it has probably been relatively unnoticed for a period of time. It lies to the east of the village of Baryulgil in the southern areas of the Belmore State Forest and Mount Neville Nature Reserve which is about halfway to Coaldale as you head towards Grafton. It is near the southern extents of the Richmond Range. The volcanics have produced some very interesting and rugged landforms such as Dobie Mountain, Mount Mookima, Mount Neville and Dome Mountain.

Most of the lavas have been eroded away but many eruptive sources for the volcano have been identified including plugs, pipes, dykes and possibly some sills. The lavas and intrusion preserved were erupted through the rocks of the Mesozoic aged Clarence-Moreton Basin which outcrop in the area as the Kangaroo Creek Sandstone and Walloon Coal Measures (probably including the MacLean Sandstone Member), but get older as you head west towards the edge of the Basin. The Mesozoic rocks in the area is actually quite deformed (as far as the Clarence-Moreton Basin goes) with large north-south trending folds and several faults nearby. The folds are visible as ridges and valleys (except those landforms associated with the more recent Belmore volcanics).

The Belmore Volcano is interesting because it shows the migration path of the hot-spot that formed the volcanoes that occur along the northern rivers area. There are actually four recognised volcanoes/volcanic provinces. These are all evenly spaced both in distance and time of eruption. From north to south these are the Tweed (23Ma), Belmore (21Ma), Ebor (19Ma) and Comboyne (16Ma) with the migratory trail of the hot-spot lost after this point. Sutherland et al. (2005) demonstrates that the Belmore Volcano is also curious because of the lava type erupted, whereas the other volcanoes erupted mainly more mafic volcanics (basalts and andesites) with later minor more felsic phase (rhyolite, dacite and trachyte ), the Belmore had very little basalt but lots of trachyte. But Isotope analysis by Sutherland et al (2005) has shown that the Belmore Volcanics were associated with the same mantle plume that generated the other volcanoes listed above.

Like most other recognised volcanoes in the region there is an earlier basalt type rock which occurs in the area which appears to have little to do with the most recent volcanic rocks. This is no exception in the Belmore area, where a basalt (dated at 31Ma) is present just to the north of the main eruptive area. Very little is known about this earlier volcanism and how it ties in with the geological history of the region.

References/Bibliography:

*Sutherland, F.L., Graham, I.T., Zwingmann, H., Pogson, R.E. & Barron, B.J. 2005. Belmore Volcanic Province, northeastern New South Wales, and some implications for plume variations along Cenozoic migratory trails. Australian Journal of Earth Sciences V52.

Wednesday, 1 August 2012

A magma chamber under Cabarita Beach

Again and again, I am amazed at how little we know about what is under our feet. It often takes an unexpected source of information to reveal some incredible knowledge of our region. The lastest information that has recently come to hand has been the preliminary geophysical survey results for the Grafton to Tenterfield survey. There are many results that may indicate some strange goings on, from some inconsistent features in the Mount Warning area (possibly indicating that the Tweed Shield Volcano might actually be a myth! More of this in a future post or two), to strange lineaments and responses showing hidden intrusions. This post is about just such a possible hidden intrusion in the Cabarita area.

Smith (1999), curiously reported that within the Neranleigh-Fernvale Beds at Norries Head, Cabarita (located on the coast midway between Tweed Heads and Mullumbimby) there appeared to be evidence of thermal metamorphism in the rocks there, but no evidence of what caused the heating. Metamorphism is a characteristic of the Neranleigh-Fernvale Beds, but the style of metamorphism is pressure related due to the formation being accreted (squashed) onto the Australian continent during a period of subduction during the Palaeozoic period. Not much heat was generated in this formation and based on the minerals identified in the rocks it is possible to estimate the pressure and temperature when these rocks were squashed. The feature that Smith (1999) identified was biotite crystallisation (a variety of the mica mineral group). This mineral is indicative of heating of rocks to a medium to high grade but the lack of a preferred orientation of this platy shaped mineral shows us that the metamorphism postdates the accretion period. ie. the heating of the rock has occurred some time after the pressure, meaning at least two periods of metamorphism.

As discussed in a previous post, the New South Wales Geological Survey has been collecting geophysical data over the region. One measurement has been the intensity of magnetism (related to the iron content of rocks). Magnetic results can display what is happening under the earths surface, not just on top. It is known to show a characteristic feature where intrusions are known, either a strong negative or strong positive anomaly, depending on the rock type. The picture to the left shows the total magnetic intensity map (courtesy of the 2012 preliminary data package from the geological survey) for the area around Cabarita. I’m sure you can pick out the obvious red and blue anomaly. the pattern is consistent with intrusions, indeed exactly the same feature can be seen in the Mount Warning area (and others that I will discuss in future). As such, I suggest that this anomaly is actually good evidence of an intrusion hidden below the heat affected surface rocks. Smith (1999) thinks that the biotite grade metamorphism occurred during the Mesozoic period (well before the Cenozoic aged Lamington Volcanics) and that there was once a body of molten rock below the ground in this area.

I’m so pleased to be able to see the preliminary dataset, it is obvious that there are many features that can be better understood.


References/bibliography:

*Smith, J.V. 1999. Structure of the Beenleigh Block, northeastern New South Wales. New England Orogen: Regional Geology, Tectonics and Metallogenesis. Papers presented at a conference at the University of New England.
*Geological Survey of New South Wales. 2012. Grafton Tenterfield Airborne Geophysical Survey: Gridded and imagery data. Preliminary package from the Department of Trade and Investment: Resources and Energy.