Some time ago Mark left a comment where he asked whether the basalt at Glenugie Peak (once known as Mount Elaine) was part of the Ebor Volcano. I didn't think it was likely but at that stage I did not know much about this peak, in fact I'd only glimpsed it through the trees while driving along the Pacific Highway to Grafton. Since then I've been trying to find out more about the peak, although I still have not had the chance to actually get there, staff from the New South Wales Geological Survey recently have reviewed the mapping of the area including the peak. What they observed reinforces my understanding that it is not related to the Ebor Volcano but the visit found out some very unusual things.
Glenugie Peak is hidden quite well by the forest all around as well as the lack of other hills to see it from. This means that it often goes unnoticed but if you have a look at a topographic map you will see that it is a very significant feature in the landscape. Before I learned what the rocks were here I thought it was likely to be an old flow of basalt from a period of volcanism that occurred before the chain of volcanoes from the East Australian Hot Spot. This is because there are many outliers of basalt that occur in the region that are too early for the hot spot volcanism. In addition, the old geological mapping of the area has Glenugie Peak being comprised of Tertiary aged extrusive Basalt. This contrasts with the surrounding rock which is the Grafton Formation of the Clarence Moreton basin.
I came across Jopin (1968) who described a sample of the Glenugie Peak obtained from another authors petrographic analysis as Limbugite. I have heard of Limburgite before but I could not remember exactly what it was or the implications of such a rock type. I don't think I have ever even seen such a rock before. So, I had to look it up! Limburgite is essentially looks a like a basalt in hand specimen but contains no quartz and is so silica poor that not even feldspar is present in the rock. Instead of feldspar (the most common rock forming mineral) other minerals called feldspathoids are present. This is termed silica under-saturation or ultramafic.
The NSW Geological Survey have now identified that the Glenugie Peak is intrusive and is a dyke, volcanic plug or similar. It has been intruded through the underlying sedimentary rocks of the Clarence Moreton Basin. Additionally, a review of mapping of the region that is being undertaken includes investigation of the rock composition at Glenugie Peak. The Investigation includes analysis of samples which identified two types of rock: Teschenite and Meltiegite. Teschenite and Meltiegite is quite consistent with the Limburgite classification by Joplin 1968. These two are also silica under-saturated rocks. The feldspathoid mineral in this rock is called nepheline.
So what, what does that mean? Well, these rocks are actually very unusual in the coastal region. Phonolite, a related but still not as silica-undersaturated (it is also higher in the elements sodium and potassium) as the rock found at Glenugie, occurs in the New England tablelands but this seems to be quite old in comparison to Glenugie Peak. These silica under-saturated rocks form where there is a significant thickness of continental crust allowing the bottom of the crust to partially melt (but not melt too much). The melted component then migrates and is emplaced either in more shallow crust or erupted to the surface. It is comparatively rare and unfortunately these rocks tend to weather easily making accurate chemical dating hard.
It seems that Glenugie Peak is made from a weird rock. I was very surprised (and excited) to see the unusual classifications that have been made. As far as I am aware this rock does not occur anywhere else nearby and even on an Australian scale is rare. When a fresh piece of rock is obtained the general appearance resembles basalt and therefore may be quickly passed over and forgotten. Luckily, the peak continues to be looked at and although nothing has been published yet it is exciting that more is being learnt about the geology of the region. Without the Geological Survey and university geology departments knowledge of our land would be so much less.
Knowing what I now do, the next time I'm spending some time in the Grafton area I'm going on a bushwalk to Glenugie Peak! Apparently it is within a flora reserve and is particularly good for bird spotting too.
Note: since writing the above post I have come across another early reference to Limbugite and Teschenite by Vallance et al (1969) who also refer to a 1919 description but unfortunately little extra information is given.
2nd note: since wrinting the above note I came accross a record from 1915 which includes analysis of apparently of one of the two types of rocks found at Mount Elaine. The geo-chemical classification of this rock (according to the TAS method) is a picro-basalt (essentiall a very low silica and very low sodium and potassium basalt).
References/bibliography:
Joplin, G. A., 1968, A Petrography of Australian Igneous Rocks, Angus and Robertson.
Valance, T.G., Wilkinson, J.F.G., Abbott, M.J., Faulks, I.G., Stewart, J.R., Bean, J.M., 1969, IX Mesozoic and Cainozoic Igneous Rocks, Journal of the Geological Society of Australia.V16.
A view of the geology of the Northern Rivers of New England, New South Wales. Includes thoughts on the formation of the regions volcanoes (Mount Warning, Ebor and others), groundwater, the Clarence Moreton Basin, recent sedimentation, gas (including coal seam gas), mineralization in the eastern part of the southern New England Orogen and more. What is the geological influence in the Northern Rivers and New England areas of Australia that provide us with the beauty and diversity we see today?
Showing posts with label ultramafic rock. Show all posts
Showing posts with label ultramafic rock. Show all posts
Thursday, 19 April 2012
Wednesday, 14 December 2011
From deep within the earth lies Baryulgil
Deep within the earth below the seas (so deep in fact we begin to enter the Earths upper mantle) we find material that is solid but so hot that it is viscous. This material is very low in quartz and when we see this rock on the surface it is unusual. The only way for such rock to come to the surface is through great wedges being thrust on to the edges of continents as the great oceanic plates move on the mantle. The upper units of rock from oceanic plates is greywacke from turbidites from collapsing continental shelves or the pelagic sediment accumulated over vast periods of time. But also you will find volcanic rocks erupted under the water at mid-ocean ridges and below these great thicknesses of basalt cooled into columns and even further below these great plutons of the mafic rock called gabbro which is the source of the basalt on the surface. Yet even deeper we start transitioning into the mantle and here we find rock that contains very little silica (ultramafic rocks) but is rich instead in iron and magnesium. These are called peridotites and dunites when found in rock form. From top to bottom the section is called an ophiolite sequence and these occur infrequently on the earths surface.
Given that the highlands of the New England region are derived from accretionary material scrapped off the sea floor during collision with the Australian Plate we have a good chance to find some. And we are in luck. I know of three significant areas in this region where ophiolite is preserved the two biggest are located north of Tamworth along the peel fault and at Port Macquarie. A smaller area can be found north-west of Grafton at the little village of Baryulgil, located midway between Tabulam and Copmanhurst.
The ophiolite at Baryulgil is unusual because only a portion of the ophiolite is preserved, this being the peridotite and dunite altered to a rock called serpentinite and a small area of gabbro. It is also worthy of note because of the damage such a rock has caused the local people. The serpentinite at Baryulgil is known as the Gordonbrook Serpentinite and includes such serpentine minerals as chrysotile – better known as a mineral of the asbestos group. Mining of this industrial mineral by Australian Asbestos and later by James Hardie occurred at Baryulgil for quite some time and it is this that has caused many problems.
Stepping slightly into the area of politics and aboriginal relations (and then quickly away again) the Baryulgil asbestos mine was often held as a wonderful example of how an indigenous population could be assimilated into the good things of western culture. Alas, as we know too well today that model of assimilation was flawed, in part in the case of Baryulgil because of the harm to its workers from such a carcinogenic material. Reportedly the mine and its processing plant had an appalling reputation for dust which is the main mechanism that causes the entry into the body and the subsequent long term damage including a massive increase in the risk of cancer. As an aside, it is worth noting that even the Nazi party in Germany before the Second World War (and greater than 40 years before the closure of the Baryulgil mine) introduced regulations to ensure that dust was minimised when working with asbestos because of the probable heath effects.
The Gordonbrook Serpentinite is a body approximately 25km long elongated unit right on the edge of the New England Fold Belt accretionary terrain. Geophysical surveys including gravity and magnetics indicate that the unit probably much larger than the area exposed as it appears to underlie the Clarence Morton basin just to the east of Baryulgil. The unit shows a gravity anomaly given its composition from heavy minerals and the magnetic signature shows up because of the richness of iron when compared to the more recent Jurassic aged sediments (Laytons Range Conglomerate and Gatton Sandstone) of the Clarence Moreton Basin and the accretionary complex meta-sediments to the west.
The gabbro unit of the ophiolite sequence is present as a small remnant unit on the north western most part of the serpentinite body on the northern side of the Clarence River. Interestingly the Clarence River pretty much runs straight though the middle of the serpentinite as it meanders from the mesozoic clarence moreton basin sediments into and out of the older accretionary terrain. This meandering has implications for indicating the history of the river development of the Clarence. But more about the Clarence River in another future post.
The minerals present in the serpentinite are mainly comprised of serpentine (a type called antigorite) but there is asbestos (chrysotile) occurring naturally in vein systems. Altered serpentinite also locally forms magnesite which is a white chalk like mineral formed through the affects of carbon dioxide rich ground water. The nature of the serpentinite and ground water alteration and reposition of secondary minerals is such that metals such as arsenic, and particularly nickel and cobalt are also quite rich in small patches. But these minerals are hard to come by unless intersected by cuttings or mine workings.
If you pass through that way to explore the more remote corners of our region take note of the roads. The councils that managed the area have previously maintained and unpgraded the roads with locally sourced rock. This means that the road base is often made from serpentinite. This has caused made road management problematic because the current Clarence Valley Council to minimise the risk of exposure to asbestos when staff or contractors are maintaining the roads!
Another feature of the Baryulgil Serpentinite is that it helps to demonstrate a theory about a major period of deformation in Eastern Australia. This formed tectonic features called the Coffs Harbour Orocline and the Texas Orocline, but there is too much to discuss about this now so I will have to dedicate a post about this in the future.
References/bibliography:
*Cornwell, J 2004 Hitlers Scientists: Science, War and the Devil's Pact. Penguin Books
*Henley, H.F. , Brown, R.E. , Brownlow, J.W. , Barnes, R.G. , Stroud, W.J. 2001 Grafton-Maclean 1:250 000 Metallogenic Map SH/56-6 and SH/56-7: Metallogenic Study and Mineral Deposit Data Sheets Geological Survey of New South Wales.
*Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
Given that the highlands of the New England region are derived from accretionary material scrapped off the sea floor during collision with the Australian Plate we have a good chance to find some. And we are in luck. I know of three significant areas in this region where ophiolite is preserved the two biggest are located north of Tamworth along the peel fault and at Port Macquarie. A smaller area can be found north-west of Grafton at the little village of Baryulgil, located midway between Tabulam and Copmanhurst.
Sepentinite from a location south of Baryulgil, the host rock for the asbestos |
Stepping slightly into the area of politics and aboriginal relations (and then quickly away again) the Baryulgil asbestos mine was often held as a wonderful example of how an indigenous population could be assimilated into the good things of western culture. Alas, as we know too well today that model of assimilation was flawed, in part in the case of Baryulgil because of the harm to its workers from such a carcinogenic material. Reportedly the mine and its processing plant had an appalling reputation for dust which is the main mechanism that causes the entry into the body and the subsequent long term damage including a massive increase in the risk of cancer. As an aside, it is worth noting that even the Nazi party in Germany before the Second World War (and greater than 40 years before the closure of the Baryulgil mine) introduced regulations to ensure that dust was minimised when working with asbestos because of the probable heath effects.
The Gordonbrook Serpentinite is a body approximately 25km long elongated unit right on the edge of the New England Fold Belt accretionary terrain. Geophysical surveys including gravity and magnetics indicate that the unit probably much larger than the area exposed as it appears to underlie the Clarence Morton basin just to the east of Baryulgil. The unit shows a gravity anomaly given its composition from heavy minerals and the magnetic signature shows up because of the richness of iron when compared to the more recent Jurassic aged sediments (Laytons Range Conglomerate and Gatton Sandstone) of the Clarence Moreton Basin and the accretionary complex meta-sediments to the west.
The gabbro unit of the ophiolite sequence is present as a small remnant unit on the north western most part of the serpentinite body on the northern side of the Clarence River. Interestingly the Clarence River pretty much runs straight though the middle of the serpentinite as it meanders from the mesozoic clarence moreton basin sediments into and out of the older accretionary terrain. This meandering has implications for indicating the history of the river development of the Clarence. But more about the Clarence River in another future post.
The minerals present in the serpentinite are mainly comprised of serpentine (a type called antigorite) but there is asbestos (chrysotile) occurring naturally in vein systems. Altered serpentinite also locally forms magnesite which is a white chalk like mineral formed through the affects of carbon dioxide rich ground water. The nature of the serpentinite and ground water alteration and reposition of secondary minerals is such that metals such as arsenic, and particularly nickel and cobalt are also quite rich in small patches. But these minerals are hard to come by unless intersected by cuttings or mine workings.
If you pass through that way to explore the more remote corners of our region take note of the roads. The councils that managed the area have previously maintained and unpgraded the roads with locally sourced rock. This means that the road base is often made from serpentinite. This has caused made road management problematic because the current Clarence Valley Council to minimise the risk of exposure to asbestos when staff or contractors are maintaining the roads!
Another feature of the Baryulgil Serpentinite is that it helps to demonstrate a theory about a major period of deformation in Eastern Australia. This formed tectonic features called the Coffs Harbour Orocline and the Texas Orocline, but there is too much to discuss about this now so I will have to dedicate a post about this in the future.
References/bibliography:
*Cornwell, J 2004 Hitlers Scientists: Science, War and the Devil's Pact. Penguin Books
*Henley, H.F. , Brown, R.E. , Brownlow, J.W. , Barnes, R.G. , Stroud, W.J. 2001 Grafton-Maclean 1:250 000 Metallogenic Map SH/56-6 and SH/56-7: Metallogenic Study and Mineral Deposit Data Sheets Geological Survey of New South Wales.
*Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
Sunday, 20 November 2011
A rock forming mineral: Olivine
Everyone has heard of the very common mineral called quartz, most people have heard of the very common mineral called feldspar, but surprisingly few people have heard of the very common mineral called olivine. I speculate that this is for two reasons. one being that quartz is resistant to weathering and is very easy to find, feldspar often occurs in big crystals and is also somewhat resistant to weathering, whereas olivine quickly breaks down into clay and occurs in mafic (quartz poor) rocks. the second being that it is often only obvious as large crystals in some basaltic rock.
But firstly olivine is made from similar components as most of the other common minerals. In particular it is comprised of silica with either/or some magnesium (Mg2SiO4), known as forsterite or iron (Fe2SiO4), known as fayalite. Its chemical formula is often given as ((Mg,Fe)2SiO4) because the magnesium or iron can substitute for each other and are usually present together. Because of the nature of the chemical bonds between the magnesium, iron and the silica group the mineral weathers quite rapidly (geologically speaking). Forsterite (mg rich) tends to be an olive green colour and because of the iron content fayalite is more browny-green.
Olivine is crystalised in volcanic rocks at high temperatures. This means that as a mafic (basalt like) magma chamber cools the first mineral to form into crystals is olivine (see figure opposite). This indirectly means that if you see olivine crystals in the field it is usually because the rock was a lava that was erupted relatively rapidly to the surface from deep in the earths crust or upper mantle. But, sometimes you can come across rocks that are almost entirely made from olivine. These rocks are called dunite. It is formed at the boundary between the crust and the mantle and has crystalised there. It is thought that it has been bought to the surface through the action of plate tectonics where sometimes large chunks of oceanic crust can be scraped onto a continental plate as the process of subduction takes place. This is called an ophiolite sequence.
A metamorphic source of olivine is through the contact metamorphism of dolomite limestones.
Particulars:
Chemical Formula: (Mg,Fe)2SiO4
Fracture:Conchoidal
Hardness (Moh): 6.5-7
Specific Gravity:
Colour: Olive Green (Forsterite) to Browny-Green (Fayalite)
Luster: Vitreous (glassy)
Crystallography: Orthorhombic
Gem: Peridot
Common accompanying Minerals: Not found with free quartz crystals. reguarly found with feldspar, pyroxene, augite
More information on olivine can be found one the Mineralogy Database.
Just a quick note on dunite and ophiolite sequences, this rock type is named after Dun Mountain in the northern part of the South Island of New Zealand. Dun Mountain is almost exclusively made from dunite and is part of a geological feature known as an ophiolite sequence which stretches along and off the Alpine Fault in New Zealand. Another ophiolite sequence is present in New Caledonia. Closer to home, the Peel Fault which runs along the western side of the New England Tablelands past Tamworth eventually to somewhere near Port Macquarie, also resembles an ophiolite sequence. I will discuss the Port Macquarie part of the Peel Fault at some time in the near future.
References/Bibliography:
*Klein, K. Hurlbut, K. Manual of Mineralogy (After Dana, J.D.). Wiley 21st Ed.
*Encyclopedia of Earth: www.eoearth.org
But firstly olivine is made from similar components as most of the other common minerals. In particular it is comprised of silica with either/or some magnesium (Mg2SiO4), known as forsterite or iron (Fe2SiO4), known as fayalite. Its chemical formula is often given as ((Mg,Fe)2SiO4) because the magnesium or iron can substitute for each other and are usually present together. Because of the nature of the chemical bonds between the magnesium, iron and the silica group the mineral weathers quite rapidly (geologically speaking). Forsterite (mg rich) tends to be an olive green colour and because of the iron content fayalite is more browny-green.
Bowens Reaction Series from Encyclopedia of Earth |
A metamorphic source of olivine is through the contact metamorphism of dolomite limestones.
Particulars:
Chemical Formula: (Mg,Fe)2SiO4
Fracture:Conchoidal
Hardness (Moh): 6.5-7
Specific Gravity:
Colour: Olive Green (Forsterite) to Browny-Green (Fayalite)
Luster: Vitreous (glassy)
Crystallography: Orthorhombic
Gem: Peridot
Common accompanying Minerals: Not found with free quartz crystals. reguarly found with feldspar, pyroxene, augite
More information on olivine can be found one the Mineralogy Database.
Just a quick note on dunite and ophiolite sequences, this rock type is named after Dun Mountain in the northern part of the South Island of New Zealand. Dun Mountain is almost exclusively made from dunite and is part of a geological feature known as an ophiolite sequence which stretches along and off the Alpine Fault in New Zealand. Another ophiolite sequence is present in New Caledonia. Closer to home, the Peel Fault which runs along the western side of the New England Tablelands past Tamworth eventually to somewhere near Port Macquarie, also resembles an ophiolite sequence. I will discuss the Port Macquarie part of the Peel Fault at some time in the near future.
References/Bibliography:
*Klein, K. Hurlbut, K. Manual of Mineralogy (After Dana, J.D.). Wiley 21st Ed.
*Encyclopedia of Earth: www.eoearth.org
Labels:
gems,
mineralogy,
ophiolite,
ultramafic rock
Subscribe to:
Posts (Atom)