Showing posts with label mineralogy. Show all posts
Showing posts with label mineralogy. Show all posts

Sunday, 20 November 2011

A rock forming mineral: Olivine

Everyone has heard of the very common mineral called quartz, most people have heard of the very common mineral called feldspar, but surprisingly few people have heard of the very common mineral called olivine. I speculate that this is for two reasons. one being that quartz is resistant to weathering and is very easy to find, feldspar often occurs in big crystals and is also somewhat resistant to weathering, whereas olivine quickly breaks down into clay and occurs in mafic (quartz poor) rocks. the second being that it is often only obvious as large crystals in some basaltic rock.

But firstly olivine is made from similar components as most of the other common minerals. In particular it is comprised of silica with either/or some magnesium (Mg2SiO4), known as forsterite or iron (Fe2SiO4), known as fayalite. Its chemical formula is often given as ((Mg,Fe)2SiO4) because the magnesium or iron can substitute for each other and are usually present together. Because of the nature of the chemical bonds between the magnesium, iron and the silica group the mineral weathers quite rapidly (geologically speaking). Forsterite (mg rich) tends to be an olive green colour and because of the iron content fayalite is more browny-green.

Bowens Reaction Series from Encyclopedia of Earth
Olivine is crystalised in volcanic rocks at high temperatures. This means that as a mafic (basalt like) magma chamber cools the first mineral to form into crystals is olivine (see figure opposite). This indirectly means that if you see olivine crystals in the field it is usually because the rock was a lava that was erupted relatively rapidly to the surface from deep in the earths crust or upper mantle. But, sometimes you can come across rocks that are almost entirely made from olivine. These rocks are called dunite. It is formed at the boundary between the crust and the mantle and has crystalised there. It is thought that it has been bought to the surface through the action of plate tectonics where sometimes large chunks of oceanic crust can be scraped onto a continental plate as the process of subduction takes place. This is called an ophiolite sequence.

A metamorphic source of olivine is through the contact metamorphism of dolomite limestones.

Particulars:

Chemical Formula: (Mg,Fe)2SiO4
Fracture:Conchoidal
Hardness (Moh): 6.5-7
Specific Gravity:
Colour: Olive Green (Forsterite) to Browny-Green (Fayalite)
Luster: Vitreous (glassy)
Crystallography: Orthorhombic
Gem: Peridot
Common accompanying Minerals: Not found with free quartz crystals. reguarly found with feldspar, pyroxene, augite

More information on olivine can be found one the Mineralogy Database.

Just a quick note on dunite and ophiolite sequences, this rock type is named after Dun Mountain in the northern part of the South Island of New Zealand. Dun Mountain is almost exclusively made from dunite and is part of a geological feature known as an ophiolite sequence which stretches along and off the Alpine Fault in New Zealand. Another ophiolite sequence is present in New Caledonia. Closer to home, the Peel Fault which runs along the western side of the New England Tablelands past Tamworth eventually to somewhere near Port Macquarie, also resembles an ophiolite sequence. I will discuss the Port Macquarie part of the Peel Fault at some time in the near future.

References/Bibliography:

*Klein, K. Hurlbut, K. Manual of Mineralogy (After Dana, J.D.). Wiley 21st Ed.
*Encyclopedia of Earth: www.eoearth.org

Tuesday, 15 November 2011

Radioactive paradise (slightly)

The areas of the Tweed Valley, Nightcap National Park and Byron Bay are often seen as fresh clean and natural. Well, I can argue that especially Byron Bay may be a little unnatural but certainly there is a feeling of 'freshness' with the rainforests and the beaches. Given this, few people would think that you'd get a bigger dose of radiation from living in these areas than you would in Brisbane or Sydney (even living near the Lucas Heights Reactor).

Few people realise that radiation occurs naturally in the environments in which we live. Yes, most of you would know that the Sun is a thermonuclear power station bombarding Earth with gamma radiation on a daily basis. But it is also a natural part of the earth and actions either natural or man made can result in these areas being elevated in radiation. In the cases below the sources are formed through different ways but all provide an increase in radiation sometimes thousands of times higher or more than what would be considered background.

Let us look at the little village of Uki first. This little place is located in the Tweed River valley and is known for its rainforest surroundings and rugged, scenic landscapes. Geologically some of the area around Uki is situated on mesozoic aged rhyolite of the Chillingham Volcanics and this rock type provides an added level of radiation due to the minerals that exist naturally in it. But even more interesting is that a mineral exploration company discovered a very tiny sized but significant anomaly in the radiation levels just south of the village. The source was not clear but sampling showed that a five square metre anomaly existed in the already slightly elevated rhyolite terrain background radiation. Analysis showed a nearly 0.05% concentration in uranium which is quite high. This is many thousands of times higher than the normal level expected. The reason for this anomaly remains unknown.

Byron Bay is located on the southern side of expansive active and historic beach systems. Much of the Byron Bay area (and much of the north coast itself) was subjected to heavy mineral mining up until the 1980's but this has ceased now. The heavy minerals sought after were mainly titanium rich ilmanite and rutile and there are other heavy minerals too such as zircon and monazite. These minerals were naturally enriched through the processes of wave and tidal action which created zones amongst the dunes that were targeted for mining. But many of the left over heavy mineral sands were not needed once the rutile and ilmanite were removed. So the left over mineral sand was discarded in some cases used as fill for future building sites. Little did people realise monazite rich left over sand would cause issues which may be unsafe for building homes on. This is because monazite is a radioactive mineral and when the residually enriched sands were dumped this increased the concentration of thorium and uranium and the associated radiation. In fact this situation didn't just occur at Byron Bay but all along the north coast.

More broadly, but less significantly many areas where rhyolite or granite is the underlying rock also have higher than normal background radiation. This too is because of radioactive minerals being enriched naturally when these sorts of magmas are being formed. So this would apply to areas in or close to the national parks of the nightcap ranges and many areas inland in the headwaters of the northern rivers such as the Clarence or Bellinger Rivers and large expanses of the New England tablelands.

References/bibliography:

 *Pechiney Resources (1970). Report on air and ground prospection, Clarence-Moreton Basin, EL 278, Nimbin - Murwillumbah area. Unpubl. Exploration Progress Report.