Showing posts with label kyogle basalt. Show all posts
Showing posts with label kyogle basalt. Show all posts

Friday, 1 February 2013

Really, really thin slices of rock

One of my most keen interests in the geology of our area is about the difference between the 'basalts'. The Lismore Basalt, the Kyogle Basalt and the Alstonville Basalt. Most of the time it is impossible to tell the difference if you are holding a piece in your hand. The size of the crystals that make up the rock are usually too small to see but occasionally you can see the characteristic twinning of a larger feldspar crystal (called a phenocryst) or even some olivine. But 95% of the time you'll just say "this is a black rock - probably a basalt".

Since there is very little in the way of field techniques to determine the difference between the regions 'basalts' other techniques need to be used. The best technique is geochemistry, looking at the actual chemical composition of the rock itself. Alas, this only works for the freshest, most unweathered rocks and of course it costs money for each sample. The second technique is called petrography (no usually nothing to do with petroleum), whereby a piece of rock is ground down to a thickness of around 30 microns, light shone through it and its properties determined by a specialised type of microscope (one with polarizing light filters). This can often give you a qualitative assessment of the rock geochemistry.

Kyogle Basalt in Plane Polarized Light
I'm not very good at making these myself but it doesn't stop me from trying. Sometimes I can make some good ones. With some assistance and advice from a technical officer at the University of Ballarat and a fellow club member who is a Senior Visiting Fellow at the University of Wollongong, I've recently had some more success.

The photos are of a piece of Kygole Basalt that I've made into thin sections. The sample was obtained from a quarry in the Afterlee area on the way to Toonumbar. The first is what the sample looks like under plane polarized light. The larger crystals are olivine which in come cases have been slightly reabsorbed creating an embayed texture on their edges. They are also slightly altered to a clay mineral of some kind around the edges and in some of the cracks. The dark black minerals are iron or titanium oxides and if you look closely you'll see little  prism like minerals which is feldspar.

Kyogle Basalt in Cross Polarized Light
The next photo is the same field of view with a second polarizer inserted at 90 degrees to the first to reveal wonderful interference patterns. The interference patterns are characteristic from mineral to mineral. The olivine clearly showing what are called high order interference colours. In this you can also see little accumulations of bright colours that are different from the olivine crystals. These are pyroxenes, probably the variety called augite. The prismatic crystals of feldspar are more evident in their straw colour and the grey 'background' is nepheline.

Overall the chemistry of the constituent minerals this rock is called a alkaline basalt. This is because it contains abundant 'alkali' metals (sodium (Na) and potassium (K)). Alkaline rocks are common in the Kyogle Basalt of the Focal Peak Volcano. Remember though, that the term Alkaline does not refer to a rock type but a suite of rock types. If this rock sample had remained in the magma chamber for a longer period of time it would factionate or evolve to rocks called nephelenites or similar. This is a different process to what goes on with the other major suite of rocks called tholeiites which tend to evolve towards dacites and rhyolites (such as the Nimbin Rhyolite that that we see on top of the Lismore Basalt - which is mainly tholeiitic in composition). But more about that another day.

Hopefully this weekend I get the chance to make some more thin sections. Which reminds me - this is the way I do it, if you have a polarizing microscope and are keen to learn the art yourself give it a go.

Monday, 23 July 2012

Geological diversity of the Toonumbar Dam area

Toonumbar Dam is a lovely area that, like so many other places, wish I could visit often. It would be lovely to relax around the dam, maybe stay the night camping or in a cabin. When I last visited, I was rather pathetic... I was looking at the rip-rap on the dam wall and trying to figure out where it was likely to have been quarried! I later found out and visited the quarry to obtain samples and look for structures. But that is a story for another day. As I was saying, the dam is a lovely place and like many beautiful places owes itself to the geological conditions of the area.

The oldest rocks (Mesozoic aged Clarence-Moreton Basin) exposed in the area are actually exposed downstream from the dam itself. Several hundred metres downstream are poor exposures of what appears to be rocks of the Jurassic Walloon Coal Measures, immediately downstream (and all around the dam) is the Kangaroo Creek Sandstone which is obvious to identify up close. The rocks which are apparently of the Walloon Coal Measures are a little harder to distinguish. It is possible that they are members of the MacLean Sandstone (which are considered part of the Walloon Coal Measures) or maybe Woodenbong Beds or even the underlying Bundamba Group but they are certainly younger than the Kangaroo Creek Sandstone.

Inclined bedding in Kangaroo Creek Sandstone
In Iron Pot Creek below the dam. Cross-bedding is also evident
It is worth noting the bedding plains in the sedimentary rocks if you are downstream of the dam. The plains are actually inclined to the west in this area and the further you go down stream the flatter the beds become, then they tilt back the other way (eastward) for a short distance. This is actually a large basin structure called the Toonumbar Anticline (the top of a fold in the rock layers). Another structure, much bigger and of regional significance is located only another couple of kilometres to the east. This is the East Richmond Fault which extends into southern Queensland and down almost to Grafton. I have actually never seen evidence of this fault in the field, but there is geophysical evidence for it and I'm assured it is there. Apparently the fault is much more evident further south between the villages of Mummelgum and Mallanganee.

The large rugged hill and ridge about 5km north of the dam is made from basalt lava, I'm not sure of the exact composition of this rock but it is likely to be part of the Kyogle Basalt which is associated with the Focal Peak Volcano. Interestingly, I think that the basalt is likely not to have been sourced from the actual peak of the volcano but from a distant vent on the side. This is because a few kilometres to the north west just on the north side of the lake is actually one of at least two intrusions of gabbro (the intrusive equivalent of basalt) near Toonumbar, one of these is crossed by Murrays Scrub Road. It is possible that these intrusions were the feeder systems for vents which erupted the Kyogle basalt in this area. This probably demonstrates the nature of volcanism in the area during the Cenozoic period. It seems apparent that the central volcano models of the Focal Peak and even the Tweed Volcanoes appears to be a bit too simplistic.

But, whether you are interested in geology or just enjoy the forests of the Northern Rivers, a trip to Toonumbar Dam is worth while.

Note that the stratigraphy of the Kangaroo Creek Sandstone has been revised since this blog post. See the this post for details.

References/Bibliography:

*O’Brien, P.E., Korsch, R.J., Wells, A.T., Sexton, M.J. Wake-Dyster, K. (1994) Structure and Tectonics of the Clarence-Morton Basin in Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*Bell, A.D.M. (1968). Report on the geology of Toonumbar Dam and Appurtenant Works. Water Conservation and Irrigation Commission.

Sunday, 1 January 2012

Nimbin Rocks!?

Sadly, I don't visit Nimbin even though I live quite close. This is mainly because you do risk your health through passive (hemp) smoking, getting beaten up if you stumble across someones 'crop' while trying to find geological features in the bush, or just threatened with a knife for money so they can get their family birthday presents (or something important like that). Another thing too is the distrust that many people have in the area for geologists thinking in their ignorance of what I am trying to find may lead to a gas well in their front yard and assuming that I have to be working for a coal seam gas company.


One of the Nimbin Rocks, Cathederal Rock
 But one feature stands out near Nimbin and that is the Nimbin Rocks which tower above the surrounding valleys. 'Google' "Nimbin Rocks" and you will find lots of short snippets on these grand rock formations. Unfortunately, I've found that these descriptions are technically wrong. For instance wikipedia (and many, many travel websites) use terms to describe the Rocks as being derived from a dyke and also as being extrusive. Well, technically, a dyke is an intrusive body only and extrusive rocks are better known as lavas. So what is correct?

The Nimbin Rocks are comprised mainly of the quartz rich volcanic rock called rhyolite overlying a section of agglomerates (reworked volcanic rock) and volcanic glass known as perlite. Below the perlite lies basalts of the Kyogle Basalt. And here may lie the clue. The rocks appear to be layered because they are deposited on top of each other. First the Kyogle Basalt, then the perlite and agglomerates and then the rhyolite lavas (with some bands of perlite within it). The rhyolitic lavas are referred to as the Georgica Rhyolite Member according to Duggan and Mason (1974), or historically and more recently as Nimbin Rhyolite according to McElroy (1962) and Cotter (1998) and others.

If the Nimbin Rocks were related to a dyke they would have formed through pushing through the surrounding rocks such as those of the Kyogle Basalt or the Clarence Moreton Basin sediments, metamorphosing them and displaying different diagnostic textures than those I know about. However, it is still quite possible that the rocks may have been vents since the nearest identified vents seem to be about 8km away to the north east in the Nightcap Ranges and rhyolite lava flows tend to not move great distances, indeed rarely greater than 5km. However, the vents located further into the Nightcap Ranges are characterised by thick erosion resistant units of rhyolite which we don't see so much near Nimbin other than the Nimbin Rocks themselves. But conversely, the shape of the rock monoliths does imply a dyke.

So, what is the answer? Well the Nimbin Rocks are either one or more volcanic vents or they are the remnants of thick lava flows possibly from vents in the nightcap ranges located on the flanks of the Tweed Volcano. Which is almost not an answer at all. But one thing is obvious, it is interesting just how little we know about the landscape in which we live, work and see.

Blog Note: I like to provide photos for these sort of posts but recently where I store photos (skydrive and/or GoogleDocs) has changed its method for providing URLs to allow embedding of these files and Blogger doesn't like the new URLs. So, these next blogs might be a bit more bland looking until I figure out a better way to store and embed photos.

Since writing the above I have come across a report by Relph (1958) which says the following:

“Quartz-feldspar porphyry [granite, the intrusive equivalent of rhyolite] has intruded the sediments at Lillian Rock and the eastern portion of the Nimbin Rocks area. In the latter occurrence the porphyry forms two prominent pinnacles, with columnar jointing evident, and outcrops to the east, and in the bed of Goolmangar Creek. In neither case have the surrounding sediments been affected to any marked degree, but it is thought that it is intrusive and of dyke or plug form rather than of extrusive nature. Under the microscope this rock revealed no sign of flow structure.”


Although Relph considered two of the Nimbin Rocks intrusive he did not find any diagnostic evidence of them being either intrusive or extrusive.

References/Bibliography

*Cotter, S. 1998. A Geochemical, Palaeomagnetic and Geomorphological Investigation of the Tertiary Volcanic Sequence of North Eastern New South Wales. Masters Thesis, Southern Cross University.
*Duggan, P.B., Mason, D.R. 1978. Stratigraphy of the Lamington Volcanics in Far Northeastern New South Wales. Australian Journal of Earth Sciences V25.
*McElroy, C.T. 1969. The Clarence-Moreton Basin in New South Wales. In Packham, G.H.(ed) - The geology of New South Wales. Geological Society of Australia. Journal V16
*Relph, R.E. 1958: Geology of the Nimbin area. Technical Report. Department of Mines NSW, 3.
*Smith, J.V. , Houston, E.C. 1995. Structure of lava flows of the Nimbin Rhyolite, northeast New South Wales. Australian Journal of Earth Sciences V42(1) p69-74.

Saturday, 29 October 2011

What is meant by some of these names (1)

I have a habit of blasting people with technical jargon sometimes and I keep forgetting that I'm a bit of a geology geek and sometimes I'm hard to understand. So I thought it might be wise to have a quick comment on some of the names that I use. There are many different types of geological names. The main types (in my opinion) are:

1. geological ages;
2. mineral names;
3. rock names; and
4. rock unit names

But just to complicate things each of these can be broken up with further names for instance:

Geological ages from the International Stratigraphic Commission.
1. geological ages: the age Cenozoic era (65.5 million years to the present) includes smaller age periods called the Quaternary (present to 2.6 million years ago), Neogene (2.6 million years to 23 million years) and Paleogene (23 million years to 65.5 million years) periods. These too can be subdivided.

2. mineral names: minerals like quartz and feldspar will be familiar to most since they are the two most common minerals on earth but these can be broken down further based on slightly different chemical properties. Feldspar can also be called plagioclase (if it is richer in the elements sodium and calcium - [chemical formula NaAlSi3O8 to CaAl2Si2O8]) or orthoclase (if it is richer in the element potassium [chemical formula KAlSi3O8]). Needless to say, these mineral names too can be subdivided.

3. rock names: you've probably heard of basalt but what about hawaiite, mugarite, tholeiite and benmorite? Well, these are just fancy names for different basalts based on slightly different mineral compositions. E.g. tholeiite has quartz (due to higher silica) and hawaiite has olivine (due to low silica). Thank goodness, these basalts are rarely subdivided any further.

4. rock unit names: One I will refer to regularly on this blog is the Lamington Volcanics. This is a unit that refers to all the rock sourced directly from the Tweed Volcano (Mount Warning area) and the Focal Peak Volcano (Mount Barney area). Itself it contains sub-units such as the Lismore Basalt which is mainly comprised of basalt (mainly of the tholeiite type) that was erupted during the Cenozoic era (Neogene to Paleogene periods). Yes, some of these units can further be subdivided.

When you get right into geology it becomes evident that it can be quite tricky. But most of the trickiness comes from learning all the names not from understanding what actually happens with rocks! I will continue to occasionally post on nomenclature in the future. In the mean time you may find some help in the glossary.

Sunday, 23 October 2011

Why lava is unable to cross the state border!

Nimbin Rhyolite (front), Mt. Warning (right), Binna Burra Rhyolite (distant)
It is interesting to see how being north or south of the Queensland border influences so many things. North of the border you can get cheaper car registration, get away from NSW politics, follow a worst rugby league teams, follow the best soccer teams, see narrower gauge railways (which even frequently have trains on them!) and find that even the rocks have changed.

Actually, the rocks have not changed but for some reason I cannot fathom (like most of the other points raised above) the rocks often have different names but many have the same ones. Rocks of the Mesozoic Clarence-Moreton basin have the same names, rocks of the Palaeozoic basement have the same names, but rocks of the Lamington Volcanics are named differently. You can stand on the Lismore Basalt and take one step into Queensland and you are on the Beechmont Basalt. Suffice to say it can be confusing. So, based on Duggan and Mason (1978) here is a table to show what the rocks units in the Lamington Volcanics are called in either state:

New South Wales  - Queensland
Kyogle Basalt - Albert Basalt
Homeleigh Agglomerate Member - Mount Gillies Rhyolite
Lismore Basalt - Beechmont Basalt
Nimbin Rhyolite - Binna Burra Rhyolite
Blue Knob Basalt - Hobwee Basalt

I note that there is some other rock units that are named differently in NSW and Queensland for example McElroy (1969) shows that such as the Evans Head Coal Measures, Ipswich coal measures and Red Cliff Coal Measures (Parts of the Ipswich Basin) are equivalent to each other, but these are separated by different rocks and so occur in distinctly different geographical locations. But as far as I am aware the Lamington volcanics are the most obvious example where an invisible dotted line representing the state border can name one half of the same rock, formed in the same way, at the same time, at the same outcrop something different.

It is also important to note that stratigraphy is often refined once more is known about rock units. A good example is that some authors such as Cotter 1998 dispute the existence of the Homeleigh Agglomerate Member which is considered part of the Nimbin Rhyolite. Also the Mount Gilllies Rhyolite has been renamed the Mount Gillies Volcanics, Therefore a different unit called the Georgica Rhyolite would be an equivalent of the Mount Gillies Volcanics.

I know I’ve said it elsewhere, but geology is not usually too difficult. The worst part is the nomenclature. I think this is a good example. What do you think?

References/bibliography:

*Cotter, S. 1998. A geochemical, Palaeomagnetic and Geomorphological Investigation of the Tertiary Volcanic Sequence of North Eastern New South Wales, Masters Thesis, Southern Cross University. 
*Duggan, P.B., Mason, D.R. 1978. Stratigraphy of the Lamington Volcanics in Far Northeastern New South Wales. Australian Journal of Earth Sciences V25.
*McElroy, C.T. 1969. The Clarence-Moreton Basin in New South Wales. In Packham, G.H.(ed) - The geology of New South Wales. Geological Society of Australia. Journal V16.

Tuesday, 18 October 2011

What's the difference between the basalts?

A vesicular (air bubbles) example of Alstonville Basalt
There are three recognized Cenozoic aged "basaltic" geological units in the area between the Queensland border and Evans Head. These were first classified by Duggan and Mason (1978) and are the Blue Knob, Kyogle and Lismore Basalts. These 'basalts' are all part of the Lamington Volcanics.C otter (1998) has also proposed a new unit known as the Alstonville Basalt and included these in the Lamington Volcanics too but the information by Cotter was 'lost' until recently.  All four of these units are described below from oldest to youngest.

Alstonville Basalt
This is a new unit proposed by Cotter (1998), dating by this author gives a date of around 41 million years. This means that the Alstonville Basalt is too old to have formed through the same mechanism as the Tweed Volcano/Mount Warning basalts that are discussed below. No model of formation has been proposed but other research Vickery et al (2007) from the basalts of the New England tablelands area has proposed that a basalt of similar composition and age known as the Maybole Volcanics formed during rifting associated with the opening of the Tasman Sea. So this mechanism may be appropriate for the Alstonville Basalt too.
The Alstonville Basalt is actually similar in composition to the Kyogle Basalt in that it consists mainly of basalt and andesite called hawaiite which means that there is no mineral quartz in the rock but the mineral olivine is commonly found instead.

Kyogle Basalt
In Queensland the Kyogle Basalt is called the Albert Basalt. Wellman and McDougall 1974 give the age of the Albert Basalt at 22.5 million years (and accordingly the Kyogle Basalt would be the same age). The origin of this unit is regarded as the Focal Peak volcano which is situated today around Mount Barney. The Kygole Basalt predominately consists of a basalt called hawaiite with minor basanite and alkaline olivine basalt (basalts which are silica poor with no quartz in the rock but some olivine). Rarely tholeiitic basalt also occurs (basalt with some quartz which has crystallized in a specific geochemical pattern). The minerals that make up the smallest crystals in the rock (the groundmass) generally have a green colour giving the Kyogle Basalt a green tinge which often helps with identification in the field.

As the Australian Plate drifted over a hot spot in the mantle a chain of volcanoes was formed with the oldest situated in Queensland and the youngest (and still active or just dormant) volcanoes situated in Victoria and out in the Southern Ocean. The Kyogle Basalt represents the commencement of hot spot volcanism (i.e. the beginning of the Tweed and Focal Peak volcanoes) in the region.

Lismore Basalt
The Lismore Basalt is called the Beechmont Basalt in Queensland which has been given an age of between 22.6 to 22.9 million years. In some areas Duggan and Mason (1978) have mapped the Lismore Basalt as directly overlying the Kyogle Basalt. However, it is important to note that in the field the distinction between the two units can be difficult at times. The Lismore basalts are mainly tholeiitic in nature (usually contain a little bit of quartz and no olivine). The distribution of the Lismore Basalt is greatest for all the units of the Lamington Volcanics in NSW with the unit exposed over an area of greater than 3 000 square kilometres. It is the major eruptive unit originating from the Tweed Shield Volcano which is centred at present day Mount Warning.

Blue Knob Basalt
There is actually very little difference between the Blue Knob and Lismore Basalts except that the two units are separated by units of rhyolite known as the Nimbin Rhyolite. Some authors such as Duggan and Houston (1978) and Smith and Houston (1995) have even suggested that they represent continuing sporadic eruptions of the Lismore Basalt during the period of eruptions of the Nimbin Rhyolite. The basalts outcrop on top of or inter-collated with the Nimbin Rhyolite and may actually represent a continuity of occasional basalt lava eruptions while the rhyolite lavas were erupted. However, the Blue Knob Basalt represents the final preserved eruptions known of the Tweed Volcano.

In Queensland the Blue Knob Basalt is called the Hobwee Basalt.

Note: Now, if you are a little bamboozled by all the weird names of the basalts and how basalts can appear to be identical and called something else in a different location (especially given state borders) please keep with me because in the near future I will do a post that explains the difference. I'll also have to find some sources online to explain how basalts are different from each other (and how to tell that difference in the field). In the mean time the glossary may provide some assistance.


References/Bibliography:

*Cotter, S. 1998. A Geochemical, Palaeomagnetic and Geomorphological Investigation of the Tertiary Volcanic Sequence of North Eastern New South Wales. Masters Thesis, Southern Cross University.
*Duggan, P.B., Mason, D.R. 1978. Stratigraphy of the Lamington Volcanics in Far Northeastern New South Wales. Australian Journal of Earth Sciences V25.
*Smith, J. V., Houston, E.C. 1995. Structure of lava flows of the Nimbin Rhyolite, northeast New South Wales. Australian Journal of Earth Sciences v42.
*Vickery, N. M., Dawson, M.W., Sivell, W.J., Malloch, K.R., Dunlap, W.J. 2007. Cainozoic igneous rocks in the Bingara to Inverell area, northeastern New South Wales. Geological Survey of New South Wales Quarterly Notes v123.
*Wellman, P. & McDougall, I. 1974. Potassium-argon Dates on the Cainozoic Volcanic Rocks of New South Wales. Journal of the Geological Society of Australia v21.

Saturday, 15 October 2011

How big was the Mount Warning Volcano?

Mount Warning looking over the Nightcap Ranges
I think I will start by my first blog by asking a rhetorical question.

How big was the Mt Warning/Tweed Volcano? It is certainly not a question that just jumps into ones head unless you love geology!

The traditional view by respected geographers such as Cliff Ollier is that Mt Warning is a remnant of a huge shield volcano that erupted during a time that was known as the Cenozoic (or Tertiary). The extents of the shield was from Evans Head in the south to Mount Tamborine in the North to Mount Lindsay in the West to somewhere out to sea to the east. It must have covered around 7 000 square kilometres in area and been almost 2 000m high. Ferrett (2005) gives its height as 2000metres and a diameter of about 100km. It was big. But I think it is wrong. Well, at least partly wrong.

The funny thing about scientific discovery is that once one is made once something is finally thought to be understood, contradictory information is seen as too hard to deal with. It is a kind of scientific inertia. Especially once the general public think something is true. For example, I've heard again and again that the Great Wall of China is the only man made object to be seen from space (it cannot be seen; whereas cities, irrigation channels, farmland and other objects are seen commonly). This is true too for Mount Warning/Tweed Volcano.

I've been able to find some 'forgotten' (but not long forgotten) research recently that I think turns things on its head. These are:

Masters research from Southern Cross University (when they had a geology department) by Cotter (1998) (the only online reference I can find is here but there is a copy of his thesis in the archives of Southern Cross University, which you can read under supervision only!), A journal article by Duggan and Mason (1978) here and another journal article by Smith et al (1998) here.

Can you put it all together?

I even think that Duggan and Mason (1978) are a little generous with the Lismore Basalt. I think that more of what they called the Lismore Basalt (from Mount Warning/Tweed Volcano) is actually Kyogle Basalt (from Focal Peak/Mount Barney). This makes the extent to the west much less. At a push Smith et al (1998) show that there are no Cenozoic basalts exist in the Evans Head area. But most significantly Cotter shows a even more:

1. basalts between Evans Head and Alstonville are different compositionally from the Lismore Basalt and are probably part of the Chillingham volcanics and therefore they are Mesozoic aged (much, much older than the Tweed Volcano.
2. the land form would have directed lavas away from the south and
3. most of the basalt in the Lismore/Alstonville area is likely to be twice the age at around 40 Million years and definitely would not have been part of the hot spot volcanism that formed the Mount Warning/Tweed Volcano around 23 million years ago.

This all shows that a lot of the recent volcanic geology of the area needs to be reviewed (Is there a 'Alstonville Basalt'). Was the basalt around Alstonville actually similar to basalts in the New England tablelands (such as the Maybole Volcanics) which were associated with the formation of the Tasman ocean? What were the southern extents of the Lismore Basalt after all?


References/Bibliography:

*Cotter, S. 1998. A Geochemical, Palaeomagnetic and Geomorphological Investigation of the Tertiary Volcanic Sequence of North Eastern New South Wales. Masters Thesis, Southern Cross University.
* Duggan, P.B., Mason, D.R. 1978. Stratigraphy of the Lamington Volcanics in Far Northeastern New South Wales. Australian Journal of Earth Sciences V25.
*Ferrett, R. Australia's Volcanoes. New Holland Publishers 2005.
*Learned Australasian Volcanology Association, 1998. Lava News, December 1998.
*Smith, J.V., Miyake, J., Houston, E.C. 1998. Mesozoic age for volcanic rocks at Evans Head, Northeastern New South Wales. Australian Journal of Earth Sciences V45