Showing posts with label stratigraphy. Show all posts
Showing posts with label stratigraphy. Show all posts

Thursday, 30 June 2016

Rocks of the Region Page

Sometimes pictures say more than words can. I have created a reference web page that has links to my Flickr pictures of most of the major stratigraphic units of the region. Here you can see pictures of rocks, minerals, landscapes and unusual features that within each of the rock units. Locations of each picture are provided in Flickr so that you can check these out for yourself if you are that eager!

In addition I've provided a link to the stratigraphic unit description in Geoscience Australia's Stratigraphic Name Database.

The whole exercise will never end. It is a work forever in progress. Let me know if you have a wish list of photographs. Click the photograph below to go to the reference page.

http://nrgeology.blogspot.com.au/p/rocks-of-region.html

http://nrgeology.blogspot.com.au/p/rocks-of-region.html

 

Sunday, 6 July 2014

The Orara Formation and the reviewed Kangaroo Creek Sandstone

There has been an increase in our understanding of the Clarence-Moreton Basin in recent years. The central upper portions of the basin have had several cored and un-cored boreholes drilled during exploration for natural gas, especially Coal Seam Gas. In this post, I will cover the implications of this exploration on our understanding of the Kangaroo Creek Sandstone and the recognition of another previously unknown unit.

In a previous post I described the Kangaroo Creek Sandstone. This unit was identified as a formation directly overlying the Walloon Coal Measures (and the MacLean Sandstone Member of the Walloon Coal Measures) (McElroy 1963). However, a recent paper (Doig & Stanmore 2012) attempts to resolve newly identified characteristics which have resulted in the authors proposing the creation of a new formation called the Orara Formation. It is proposed by Doig & Stanmore (2012) that the Orara Formation is comprised of two member units. These are another new unit called the Bungawalbin Member and the now demoted Kangaroo Creek Sandstone Member.

Doig & Stanmore (2012) found that the proposed Bungawalbin Member differed substantially from the Kangaroo Creek Sandstone and overlying Grafton Formation. They describe the Bungawalbin as between 45m-115m thick and dominated by mudstone and carbonaceous mudstone that is thinly bedded with fine grained sandstone with increasing amounts of massive, medium-grained quartzose sandstone beds near the base of the member. The unit is interpreted as a persistent low energy riverine floodplain environment.

The Bungawalbin Members contact with the underlying Kangaroo Creek Sandstone Member is transitional. With the medium-grained quartz rich sandstone becoming dominant in the Kangaroo Creek Sandstone. The composition and formation history of the Kangaroo Creek Sandstone has not been questioned but the significant fine grained component of the Bungawalbin Member necessitates the distinction between these two members. Additionally, Doig & Stanmore (2012) clearly demonstrated that the geophysical response of the Bungawalbin Member was substantially different from the Kangaroo Creek Sandstone.

Hence, we are learning more about the land on which we live. The geology is slowly becoming better understood. It is interesting to observe that there has been no detailed work on the upper most formations of the Clarence-Moreton since the 1960’s. The drilling that has occurred has unlocked more hidden characteristics of the basin. It helps our understanding of basin history as well as the original intention of finding gas resources. There is more to cover in future posts including understanding of the basins youngest formation, the Grafton Formation, but that will come soon.

References/bibliography:

*Doig, A. & Stanmore, P. 2012. The Clarence-Moreton Basin in New South Wales: geology, stratigraphy and coal seam gas characteristics. Paper presented at the Eastern Australasian Basin Symposium IV. Brisbane.
*McElroy, C.T., 1963. The Geology of the Clarence-Moreton Basin. Memoirs of the Geological Survey of New South Wales, Geology. 9.

Monday, 19 May 2014

Geology, stratigraphy, water and CSG a bit more understood

A CSIRO researcher recently provided me with a copy of a conference paper on the Clarence-Moreton Basin that I have been searching for (Doig & Stanmore 2012). I was looking for this information for quite some time as I thought there was much to be learned from it. This is because the research was based upon coal seam gas (CSG) exploration results. It did not disappoint me at all. I have previously blogged on the stratigraphy of the basin but frequent visitors will be aware that there has been a hiatus on this topic. This is because I knew more information had been compiled as a result of gas exploration in the region. In particular this was to do with the Grafton Formation and Kangaroo Creek Sandstone. You can read my previous posts but note that Doig & Stanmore (2012) propose to reclassify these units (see figures 1 and 2 on this post). The information my previous posts were based upon Wells and O’Brien (1994). This is still the most comprehensive guide to the basin but now there is potentially some significant refinements.

Interpretation of the stratigraphy of the upper sequences of the Clarence-Moreton Basin
after Wells & O'Brien (1994) and Willis (1994)
Doig & Stanmore (2012) noted that CSG exploration drilling has provided important clues to the layers that make up the Clarence-Moreton basin that were inferred only through limited field exposure. Drilling provides a nice continuous profile which can be compared to other drill holes and to outcropping information. In the case of Doig & Stanmore (2012) this has completely redrawn the stratigraphy of the upper Clarence-Moreton Basin.

Reviewed Clarence-Moreton Basin stratigraphy after Doig & Stanmore (2012)
I will go into more detail in future posts but I note that Doig & Stanmore (2012) have made some major changes to the Grafton Formation. In particular, they have identified two new distinct members of the formation. The Piora Member and the Rappville Member. As for the underlying Kangaroo Creek Sandstone, this spatially and significant unit has been demoted simply to a member of a newly proposed formation called the Orara Formation. The Orara Formation itself has two distinct formations the demoted Kangaroo Creek Sandstone Member and the new Bungawalbin Member. (See figure 2).

The Woodenbong beds don’t get a guernsey at all in this paper. I suspect that this is because it would better fit into either the Bungawalbin Member of the Kangaroo Creek Sandstone or the Piora Member of the Grafton formation. More work needs to be carried out to make it more certain.

Clearly we do not understand much about the Clarence-Moreton Basin. Even the shallowest geological components! Knowledge keeps improving the more people investigate. The paper provides further interest because identification of the stratigraphic units and geochemical data obtained provide an indication of the risk associated with groundwater resources and CSG production. So as usual, further blog posts are required.

References/bibliography:
*Doig, A. & Stanmore, P. (2012). The Clarence-Moreton Basin in New South Wales; geology, stratigraphy and coal seam gas characteristics. Paper presented at the Eastern Australian Basins Symposium IV, Brisbane.
*Wells, A.T. & O’Brien (1994). Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland, Australian Geological Survey Organisation, Bulletin 241.

Saturday, 23 November 2013

A non textbook example

Text books are wonderful. They always have excellent ‘text-book’ examples! These show how a scenario can be interpreted and what information is used in that interpretation. As you get to know the textbook you get a feel for most or all of the information you can obtain to give you an answer. However, in geology many of the techniques are rarely all applicable to every field situation; or if they are they are applicable, they are unreasonably difficult to use.I have recently experienced one such example in an area south-west of Byron Bay. There is very little information available to interpret and therefore the possibility of misinterpretation can be high.

Byron Shire Council recently did some road works along a section of road between the village of Newrybar and the coast. This work refreshed some small road cuttings (road cuttings are geological tourist attractions). I took a close look at one of the road cuttings on the very edge of the Alstonville Plateau. The rock in this cutting was clearly different from the overlying and dominant Cenozoic aged basaltic lavas that make up the plateau. The exposure was made up of conglomerate.

Conglomerate is a sedimentary rock most often associated with high energy river environments. In this case the conglomerate contained clasts made from other older rocks that occur elsewhere in the region. This included chert, quartzite and fine to medium grained sedimentary rocks such as sandstones and siltstones. The rock though had been quite weathered and the sedimentary clasts had become quite broken down even though they retained their shape insitu.

Conglomerate near Newrybar on the road to Broken Head and Byron Bay
note the different clast types and sizes - typical of the Laytons Range Conglomerate
There is nothing particularly special about this conglomerate. Here the mapping indicates that I was at the very edge of the Clarence-Moreton basin and therefore the oldest rocks of the basin would be likely to outcrop. Indeed, the oldest rock in the basin is known as the Laytons Range Conglomerate. This outcrop looks very much like it. But… further to the east (for example on Broken Head road) are rocks of the Ripley Road Sandstone. These are younger rocks of the Clarence-Moreton basin than the Laytons Range Conglomerate. The Ripley Road Sandstone contains small layers of pebble conglomerate but nothing compared to that exposed in the road cutting. Weirdly this means that the current mapping of the basin indicates that the Ripley Road Sandstone should be older than the road cutting rocks. This is the opposite of the known sequence of the area. To make the road cutting conglomerate fit there is several hypotheses:

  1. The conglomerate in the cutting is actually not part of the Clarence-moreton basin but was deposited more recently and then covered by basalt. Maybe it was a pre-volcanic river system,
  2. The conglomerate in the cutting is actually part of a younger Clarence-Moreton basin unit that has needs to be redefined to include this particular type of conglomerate.
  3. The depositional structure of the Clarence-Moreton Basin is different in this area to the current model e.g. the road cutting is on the western side of a small sub basin.
  4. Faulting or folding has up-thrown the conglomerate in this area giving the impression that it is stratigraphically higher
  5. Other reasons I cannot think of at the moment

The only trouble is there seems to be inadequate information and field exposure to narrow down the possibilities. I’d love to get a drill rig and core a 200m interval but who has a spare hundred thousand dollars to do that?!

For the time being all I can do is assume the conglomerate was deposited sometime during the formation of the Clarence-Moreton Basin maybe as long as 250million years ago or deposited sometime before the Cenozoic basalts of the Alstonville Plateau possibly 40million years ago.

Alas, there is not enough information available to interpret this situation. But this is normal! We rarely are lucky enough to get a text-book example. In science the examples we are most confronted with are incomplete and generally frustrating. We can’t lie to ourselves that we can answer every question and know everything.

To the lady that stopped, looked at me curiously, and then asked me if I was “alright?” when I was examining the road cutting: Yes, I’m alright. But I still want to know the answer.

Friday, 14 September 2012

Walloon Coal Measures of the Southern Clarence-Morton Basin

In previous posts I’ve briefly discussed the upper most layers of the Clarence-Moreton Basin. The Grafton Formation which overlies the Kangaroo Creek Sandstone which in turn overlies the Woodenbong Beds/MacLean Sandstone Member. The MacLean Sandstone Member is a member of a larger unit called the Walloon Coal Measures and it is this unit that I will briefly comment on now.

I’ve often heard people mistakenly say that the Walloon Coal Measures is a coal seam. This is not correct because the balance of the unit is actually made up of mixed rocks. According to Wells & O’Brien (1994) the coal measures include sandstones (made from volcanic rock fragments), carbonaceous siltstone, shale, mudstone, coal and clayey siltstones. Also clayey ironstone and infrequently oil shale and limestone can be found. Apparently tree stumps remaining in their growth position have also been found, though these have become carbonised (coal). The coal layers themselves are thin (millimetre scale) to occasionally thick (30-40cm) in the Southern Basin but the whole unit of all the different rock types that make up the Walloon Coal Measures totals at least 200 metres of thickness and is variable from location to location.

The coal in the measures is formed from peat that grew in a moist but temperate environment during the early to middle Jurassic in this area (smack in the middle of the age of the dinosaurs). The depositional environment appears to have been mainly flood-plain and meandering stream environments. Boggy mires forming the peat were common, but layers of volcanic ash from occasional volcanic eruptions from close by are preserved. This makes some of the coal seams high in ash content which reduces the quality of the coal. The environment was thought to be reflective of a period of high sea level.

The Walloon Coal Measures in Bexhill Brick Pit at Bexhill
Interestingly, the Walloon Coal Measures are some of the most extensive and continuous sedimentary rock formations in eastern Australia. They are correlated with almost identical units in the Surat Basin and the Maryborough Basin making the potential spatial extent of the unit huge. The outcrop of the Walloon Coal Measures is fairly limited with much obscured by the Grafton Formation, Kangaroo Creek Sandstone and Woodenbong Beds as well as Cenozoic aged volcanic rock especially associated with the Focal Peak and Tweed Volcanic areas. In our region the best exposures are in the Nimbin area and further north but also at Coaldale where the Clarence-Moreton Basin has been deformed creating a bulge which has been eroded exposing the Walloon Coal Measures. Areas to the south of MacLean show some outcrop and on the other side of the Basin, the Kangaroo Creek and areas near Tabulam show good exposures. Other places have exposures of the Walloon Coal Measures because of local faulting and folding that has occurred in places like the Richmond Range.

I understand that coal mining was historically carried out near Tabulam, Kangaroo Creek and Nimbin but the size of the deposits was such that these were only small and fairly short lived enterprises, though Murwillimbah did have a power station earlier last century which was fueled on local coal transported from the area around Tyalgum. Of course now the Walloon Coal Measures has been frequently under discussion regarding its gas potential especially in the form of coal seam gas (CSG) also known as coal bed methane.

The presence of gas in the coal measures is a natural function of coal and the formation of coal when it was formed. As the rock is gently ‘cooked’ following its deposition as peat gases are given off. Peat is made from decayed plant and animal matter which when broken down into its elemental constituents is mainly hydrogen (H) and carbon (C) atoms. The hydrogen is bonded to the carbon in oxygen poor environments and forms methane (CH4) and sometimes more slightly moe complex organic molecules such as C2H6, C3H10 etc, or if conditions are right the molecules are big enough and complex enough to form oils. In the case of the Southern Clarence-Moreton Basin Walloon Coal Measures the conditions were too hot for oil to be stable so the smaller gas molecules are formed. Gas may be trapped in the layers of coal within voids and cracks (called cleats) or they may sometimes migrate to other layers where they can be trapped. This is actually the difference between ‘conventional’ gas and coal seam gas, i.e. all conventional gas was once coal seam gas. Oil shale and shale gas are also present in some areas of the Walloon Coal Measures but these are very rare and are small deposits (I might do a post on these in the future but given their insignificance I might not get there). Russell 1994 noted that the best quality gas, mature or 'dry gas' was likely to be found abundantly in the eastern portion of the basin, whereas wetter gas and oils were likely to be more prevalent in the west. Interestnigly it is thought that the maturity is a response to the thermal changes in the Earths crust during the formation of the Tasman Sea.

The Walloon Coal Measures contains both conventional and coal seam gas and very little oil. Indeed, I understand that substantial amounts of conventional gas was first discovered in the Hogarth Ranges about 40 years ago and that more recently Metgasco have discovered significant amounts at Kingfisher which I think is to the south of Casino. As far as coal seam gas goes, if Walloon Coal Measures are present there is coal and so there is also a chance that gas may also be present.

References/bibliography:

*O’Brien, P.E., Korsch, R.J., Wells, A.T., Sexton, M.J. Wake-Dyster, K. (1994) Structure and Tectonics of the Clarence-Morton Basin. In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*O'Brien, P.E., Powell, T.G. & Wells, A.T. (1994). Petroleum Potential of the Clarence-Moreton Basin in Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*Russell, N.J. 1994. A Palaeogeothermal study of the Southern Clarence Moreton Basin in Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*Wells, A.T. and O'Brien, P.E. 1994. Lithostratigraphic framework of the Clarence-Moreton Basin. In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.

Sunday, 15 July 2012

Who has the answer? Woodenbong, MacLean, Grafton and a Kangaroo Creek

How well do we understand how the Clarence-Moreton Basin was formed? We know a little but not much about areas have never been drilled to understand the stratigraphy. A good example of our lack of geological understanding is the areas to the north and west of Kyogle, Bonalbo, Urbenville, etc. This area on the most recently published geological maps includes the area referred to as the Woodenbong Beds. We know very little about this particular formation.

It was actually Queensland based geologists (Exon et al. 1974) that first named the Woodenbong Beds. Exon et al (1974), (although according to the stratigraphic names database Coote (1986) is considered the first reference) described the lower portion of the Woodenbong Beds as massive to medium bedded pale-grey, fine to coarse grained, cross-bedded, labile (easily decomposed) sandstone. The upper portions were described as fine-medium grained feldspathic sandstone with siltstone, mudstone and minor coal. Stratigraphically, Exon et al (1974) also suggested that the Woodenbong Beds were lateral equivalents of the Kangaroo Creek Sandstone and/or the Grafton Formation. The boundary between the underlying Walloon Coal Measures was also described as conformable (that is, no significant time gap between deposition of the units).

Woodenbong beds possible stratigraphic relationships
Subsequent authors such as Wells & O'Brien (1994) have followed on with the definition provided by Exon et al (1974), who extrapolated the interpretation of the Woodenbong Beds to suggest that they may actually be equivalents of the Injune Creek Group (Springbok Sandstone and Westborne Formation) in the Surat Basin.

However, in the very same volume of work as Wells & O'Brien (1994) a different author, Willis (1994) proposed that the Woodenbong Beds actually underlie the Kangaroo Creek Sandstone (and therefore Grafton Formation), suggesting that the MacLean Sandstone Member of the Walloon Coal Measures was equivalent to the Woodenbong Beds. Willis (1994) also cited other authors such as (McElroy 1963, Ellice-Flint 1973 and Scott 1982 (note I have not seen these three publications)). These authors contradicted Exon et al 1974, and Wells & O'Brien 1994 by indicating that the boundary between the underlying Kangaroo Creek Sandstone is in places disconformable/unconformable (meaning there is a hiatus of deposition or a period of erosion preceding the formation of the Kangaroo Creek Sandstone).

The only thing all of the above authors agree on is that the composition of the Woodenbong Beds is very different from the Kangaroo Creek Sandstone and Grafton Formation. I'm sure you would agree that we obviously need more information to figure this one out!

Note that the stratigraphy of these formations have been recently revised since this blog post. See the this post for details.

References/Bibliography:

*Wells, A.T. and O'Brien, P.E. 1994. Lithostratigraphic framework of the Clarence-Moreton Basin. In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*Wells, A.T. and O'Brien, P.E. (eds.) 1994. Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*Willis, I.L. 1994 Stratigraphic Implications of Regional Reconnaissance Observations in the Southern Clarence-Morton Basin, New South Wales In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.

see *Wells, A.T. and O'Brien, P.E. (eds.) 1994. Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.  for other cited authors.

Saturday, 19 May 2012

Rocks named after a creek named after an Australian marsupial

Note that the stratigraphy of this formation has been revised since this blog post. See the this recent post for details.

One of the most widely outcropping rock units of the mesozoic aged Clarence Moreton Basin is the Kangaroo Creek Sandstone named after its type locality at Kangaroo Creek in the Nymboida area. It is also one of the most recognisable stratigraphic units in the basin.

McElroy (1963) showed that the Kangaroo Creek Sandstone consisted mainly of white to cream coloured quartz sand. The texture of the sandstone is saccharoidal, that is, it has a glistening sugar like appearance of the quartz sand grains. This sand glistens more than usual because while buried, fluids in the rock caused extra silica (quartz) to crystallise on the existing sand grains creating new tiny crystal faces that reflect light in a vivid way. The nature of the rock in this formation tends to weather less readily than other units and as a result tends to form prominent topographic features such as hills, cliffs, ridges and the like.

Crossbedding and typical saccharoidal texture in Kangaroo Creek Sandstone


The Kangaroo Creek Sandstone was deposited in a fluvial (river) setting and as a result cross bedding structures are very common in outcrops. Sorting of grains in the unit is very well developed, that is, the grain size is very similar at any particular outcrop. Additionally, the thickness of the beds is very consistent which together indicates that the tectonic setting was relatively unchanged through the period of deposition. Following burial of the sandstone fluids present in the rock caused extra dissolved silica to precipitate out onto the existing sand grains filling in voids and creating the characteristic texture.

The Kangaroo Creek Sandstone is considered by some authors (Wells and O'Brien 1998) to grade into the Woodenbong Beds in the north west of the NSW portion of the basin. However, it is noted that others (Willis 1998) consider the Woodenbong Beds the equivalent to the McLean Sandstone Member of the Walloon Coal Measures (but more about this in future post). The Kangaroo Creek Sandstone underlies the Grafton Formation but the contact with this formation is gradational. According to (Wells and O'Brien 1998) it also sometimes shows a conformable boundary with the underlying Walloon Coal Measures, however, in most areas the boundary is shown by an unconformity. It is easy to tell the difference however, because compositionally any sandstones in the Walloon Coal Measures are composed of feldspar and lithic grains rather than the quartz of the Kangaroo Creek Sandstone.

Outcrop of Kangaroo Creek Sandstone on the Clarence River near Grafton
It is interesting to note that the recrystalisation of quartz in the Kangaroo Creek Sandstone means that this unit is now essentially dry with respect to Ground Water. There is very few spaces left for the water to travel through. for example O'Brien et al (1998) shows that most other sandstones in other basins such as the Great Artesian Basin, is where most ground water is obtained. In fact, in the whole of the Clarence Moreton Basin the only unit to have useful ground water bores is the Grafton Formation which is recharged from rainfall. The Kangaroo Creek Sandstone does have some bores that produce a very little water in the upper most portion of the unit (probably rainwater recharging fractures in these locations (Kwantes 2011), like the overlying Grafton Formation) but it appears that no other bores obtain water from the Kangaroo Creek Sandstone because the formation actually behaves like an aquiclude or aquitard. Water is not obtained from aquifers below the Kangaroo Creek Sandstone because the water quality is generally poor.

It is interesting to note that according to some gas exploration results it is apparent that areas of the Kangaroo Creek Sandstone (assuming this is not mistakenly identified McLean Sandstone) that are directly overlying the Walloon Coal Measures contain substantial areas of conventional natural gas. This is gas that has migrated from the underlying Walloon Coal Measures and been trapped in either pore spaces or fracture zones. I understand that several companies in the area such as Metgasco and Red Sky Energy intend to exploit these reserves.

Pollen spores in drill holes give an age of middle to late Jurassic for the Kangaroo Creek Sandstone (Wells and O'Brien 1998).

References/Bibliography:

*Kwantes, E. 2011. Future Water Strategy: Groundwater Options - Position Paper. Report for Rous Water by Parsons Brinkerhoff.
*McElroy, C.T. 1963 The geology of the Clarence-Moreton Basin. New South Wales Geological Survey, Memoir 9, 172 pp.
*Moran, C., Vink, S. 2010 Assessment of impacts of the proposed coal seam gas operations on surface and groundwater systems in the Murray-Darling Basin. The University of Queensland.
*New South Wales Government. 2010. State of the Catchment Report: Groundwater. Northern Rivers Region. Department of Environment, Climate Change and Water.
*Wells, A.T. , O'Brien, P.E. 1994 Lithostratigraphic framework of the Clarence-Moreton Basin In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*Willis, I.L. 1994 Stratigraphic Implications of Regional Reconnaissance Observations in the Southern Clarence-Morton Basin, New South Wales In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.

Wednesday, 25 April 2012

A special volcano on the edge of the Northern Rivers

I have previously mentioned several volcanoes that have existed during the Cenozoic period in and around the Northern Rivers region of the New England. But, it is worth noting that there was once a period of significant volcanism earlier in the Cenozoic which defines the landscape of the Great Dividing Range south of Glen Innes, near the villages of Glencoe (with its excellent pub: The Red Lion Inn) and Ben Lomond. This area is the headwaters of many wild rivers found flowing down the rugged New England escarpment that are tributaries of the Clarence River. On the other side of the divide eventually join the Darling and then Murray River. The Maybole volcano was apparently centred at the modern day and generally unheard of locality, Maybole. It erupted lavas over a large area in every direction including large areas to the west, east and south east.

Maybole lies just on or just outside of the headwaters of the Northern Rivers but none-the-less is worth mentioning because of the extent of volcanic rock that appears to have originated from it. The rocks that have come from the Maybole Volcano are mostly basalt type rocks which were once referred to as the Eastern division of the Central Volcanic Province (Coenraads & Ollier 1992), now referred to as the Maybole Volcanics but still part of the Central Volcanic Province according to Vickery et al (2007). The Maybole Volcanics are comprised of alkali olivine basalt to slightly less silica undersaturated basalt and andesite and reworked volcanic material (epiclastic and volcaniclastic sedimentary rocks) and was erupted around 36-39 million years ago.

Coenraads & Ollier (1992) identified that Maybole was a significant volcano by determining the thickness of basalt that occurred in the region and noticing that at Maybole the thickness was significant at several hundred metres. There are also apparently some dykes and vents that are present. Additionally, they had a close look at drainage patterns and realised that they radiated like the spokes on a bicycle, a classical indication of volcanic geomorphology.

Since Coenraads & Ollier (1992), Vickery et al (2007) has undertaken a major review of the Central Volcanic Province and delineated several constituents of the province. The most significant along this part of the Great Divide is now known as the Maybole Volcanics, obviously directly associated with the Maybole volcano. The age of the Central Volcanic Province including the Maybole Volcanics shows that these rocks are too old to be associated with the Eastern Australian hotspot which formed many of the other major volcanic centres in the region (such as the Focal Peak, Tweed and Ebor Volcanoes). Some time after the end of volcanism from the Maybole Volcano  other volcanoes between about 14-24Ma erupted their lavas over the top of the Maybole Volcanic suite rocks.

Interestingly, it appears that the Maybole Volcanics had affected exactly where the Great Divide was situated because the nature of the existing range was such that the lavas filled the valleys creating thick volcanic piles while the existing hills were only covered with thin layers. This meant redirection of streams and when the rock was eroded the more erodible hills were turned into valleys and the valleys became hills caped with basalt. This is termed an inverted topography. But more about this in another post.

Interestingly, Coenraads & Ollier (1992) have observed that the the great divide has moved over time with some of the old basalt filled valleys showing that they used to flow to the west but with the streams now flowing to the east. It actually appears that the Northern Rivers region is getting bigger!

Red Lion Inn (from Flickr)
PS. Like lots of geologists I like pubs with a good atmosphere and The Red Lion Inn at Glencoe is just such a beautiful place. It is an exceptional location to stop for a meal, especially during the middle of winter while snow is coming down. Alternatively, during autumn while the trees turn bright yellow and red, or during spring while the new leaves are coming out, or even summer! i.e. I recommend it!

References/bibliography:

*Coenraads, R. R., Ollier, C.D. 1992. Tectonics and Landforms of the New England Region in 1992 Field Conference - New England District. Geological Society of Australia Queensland Division.
*Vickery, N. M., Dawson, M.W., Sivell, W.J., Malloch, K.R., Dunlap, W.J. 2007. Cainozoic igneous rocks in the Bingara to Inverell area, northeastern New South Wales. Geological Survey of New South Wales Quarterly Notes v123.

Friday, 9 December 2011

Top of the Basin: The Grafton Formation

The Clarence Moreton Basin covers a large proportion of the catchment areas of the present day Clarence and Richmond Rivers in northern New South Wales and extends a significant distance more into south east Queensland. The portion of the basin which is most well known is the Queensland section but slowly we are learning more about the southern areas. The basin consists of many individual stratigraphic units which were deposited in slightly different environments at different times. The youngest unit is called the Grafton Formation and is thought to have been deposited during the Mesozoic era called the Cretaceous period which could be as young as 65Ma but it may be as old as late Jurassic.

The extent of the Grafton formation is small by Clarence Morton Basin standards because the majority of the unit appears to have been removed by erosion. Exposures can be found as far as 30km south of Grafton to about 10km north of Casino. The full remaining thickness of the formation has been estimated at up to 442m but is probably less with the best estimate of 267m obtained from a drill hole at Grafton.

Grafton Formation lithic sandstone near Casino
The formation is comprised of interbedded lithic to quartz arenites (sandstones), clayey siltstone, claystone and minor coal, sometimes 2metre thick conglomerate layers are present too. The lithic fragments frequently include the volcanic rock andesite implying active volcanism upstream at the same time as the sediments were being deposited. The bedding can be thin to thick and commonly a ferruginous (iron rich) lateritic weathering profile is present creating a very red coloured soil. This is particularly evident in the hills just to the north of Grafton such as Junction Hill. The sandstones are fairly characteristic in that they are usually tough and green-grey in colour.

One author (Wells and O'Brien 1994) suggests that the Grafton formation (and the Kangaroo Creek Sandstone) may also be equivalent to the Woodenbing beds (located between Urbenville/Woodenbong and Kyogle) and even though they are lithologically (rock composition) different this is still possible. An alternative by Willis 1994 is that it is the equivalent of the McLean Sandstone Member of the Walloon Coal Measures. But this will be discussed in detail in a future post.

The formation overlies the Kangaroo Creek Sandstone and is gradational meaning that the Kangaroo Creek Sandstone grades into the Grafton formation. Thankfully, recognising the difference is not hard on the basis of lithology (rock type) because the Kangaroo Creek Sandstone is very consistent in appearance (saccharoidal texture and abundant cross bedding) and consistent rock composition (quartz sandstone). The top Grafton formation has been eroded and is overlain by the more recent Cenozoic volcanics.

The Grafton formation was deposited in a mainly fluvial (riverine) environment with the more common siltstones and mudstones in the south probably being deposited in a lacustrine (lake) environment. This led to an idea that the source of the rivers and lakes that laid down the sediments in Grafton Formation was from the north but recent revisions of the probable mountain chains that existed at the time means that this many not necessarily be the case. Wells and O'Brien (1994) give the maximum age of the Grafton Formation as late Jurassic.

Interestingly, Grafton Formation is the only rock unit in the Clarence-Moreton Basin that has any significant or active ground water sources. The basin has proven to be a very poor source for water because of the lack of volume. In fact the only volume of water obtained from the Grafton Formation is really only unconfined aquifers recharged from surface water and overlying alluvium.


Note: Since writing this post it has been suggested in a new paper that the Grafton Formation appears to be made up of two members. The new paper by Doig & Stanmore (2012) significantly increases our knowledge of the Grafton Formation. I will endeavour to do a new blog post with the updated details.




References/bibliography:

*McElroy, C.T. 1969 The Clarence-Moreton Basin in New South Wales. In Packham G.H.(ed) The geology of New South Wales. Geological Society of Australia. Journal 16.
*New South Wales Government. 2010. State of the Catchment Report: Groundwater. Northern Rivers Region. Department of Environment, Climate Change and Water.
*Wells, A.T. , O'Brien, P.E. 1994 Lithostratigraphic framework of the Clarence-Moreton Basin In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.
*Willis, I.L. 1994 Stratigraphic Implications of Regional Reconnaissance Observations in the Southern Clarence-Morton Basin, New South Wales In Wells, A.T. and O'Brien, P.E. (eds.) Geology and Petroleum Potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation. Bulletin 241.

Saturday, 29 October 2011

What is meant by some of these names (1)

I have a habit of blasting people with technical jargon sometimes and I keep forgetting that I'm a bit of a geology geek and sometimes I'm hard to understand. So I thought it might be wise to have a quick comment on some of the names that I use. There are many different types of geological names. The main types (in my opinion) are:

1. geological ages;
2. mineral names;
3. rock names; and
4. rock unit names

But just to complicate things each of these can be broken up with further names for instance:

Geological ages from the International Stratigraphic Commission.
1. geological ages: the age Cenozoic era (65.5 million years to the present) includes smaller age periods called the Quaternary (present to 2.6 million years ago), Neogene (2.6 million years to 23 million years) and Paleogene (23 million years to 65.5 million years) periods. These too can be subdivided.

2. mineral names: minerals like quartz and feldspar will be familiar to most since they are the two most common minerals on earth but these can be broken down further based on slightly different chemical properties. Feldspar can also be called plagioclase (if it is richer in the elements sodium and calcium - [chemical formula NaAlSi3O8 to CaAl2Si2O8]) or orthoclase (if it is richer in the element potassium [chemical formula KAlSi3O8]). Needless to say, these mineral names too can be subdivided.

3. rock names: you've probably heard of basalt but what about hawaiite, mugarite, tholeiite and benmorite? Well, these are just fancy names for different basalts based on slightly different mineral compositions. E.g. tholeiite has quartz (due to higher silica) and hawaiite has olivine (due to low silica). Thank goodness, these basalts are rarely subdivided any further.

4. rock unit names: One I will refer to regularly on this blog is the Lamington Volcanics. This is a unit that refers to all the rock sourced directly from the Tweed Volcano (Mount Warning area) and the Focal Peak Volcano (Mount Barney area). Itself it contains sub-units such as the Lismore Basalt which is mainly comprised of basalt (mainly of the tholeiite type) that was erupted during the Cenozoic era (Neogene to Paleogene periods). Yes, some of these units can further be subdivided.

When you get right into geology it becomes evident that it can be quite tricky. But most of the trickiness comes from learning all the names not from understanding what actually happens with rocks! I will continue to occasionally post on nomenclature in the future. In the mean time you may find some help in the glossary.

Friday, 21 October 2011

Where have the Brisbane Metamorphics gone?!

A few months ago I was reading the 2011 NSW National Parks and Wildlife Service plan of management for the Julian Rocks Nature Reserve just offshore, near Byron Bay. The introduction said the Julian Rocks “are composed of Brisbane Metamorphics which date from the Carboniferous-Devonian period 345-405 million years ago and are the most resistant rock type in the region”. Sounds fine as a bit of background but why can’t I find recent geological work that refers to the Brisbane Metamorphics anywhere else?

Academics from Southern Cross University have used the term in published works as recently as 2007 (Specht and Specht 2007). But I can’t find it on any map or in any geological publication after 1990. Surely the rocks haven’t been eroded that quickly especially since it is “the most resistant rock type in the region”. I can, however, find reference to the Brisbane Metamorphics on the 1: 1000000 scale NSW geological map from 1962. But at such a scale it is hard to figure out exactly where it is. Broadly it appears to be located in some areas near Murwillumbah and some areas near the border with Queensland. The most specific paper I have is by Holcome (1977) which discussed the Brisbane Metamorphics in depth but doesn't say where it goes!

When in doubt try Google? But the result you get when typing in “northern rivers geology” is the website Big Volcano. It can be found here. Here too the geological history summary refers to the Brisbane Metamorphics but mistakenly links to a site that shows a small contact metamorphic area at Mount Coot-tha just to the west of Brisbane. This is a bit confusing because the metamorphic rock here is called the Bunya Phyllite which is a regional metamorphic rock which has undergone a second metamorphic even during the emplacement of the granite that makes up Mount Coot-tha. Interesting in itself, but it does not answer our question why the Brisbane Metamorphics were said to be at Byron Bay!

Well, The answer is simply a case of one of the most difficult aspects of geology, nomenclature. Geoscience Australia provides an excellent service in maintaining a database of all geological units named in Australia (past, present and proposed). It includes an entry on the Brisbane Metamorphics which can be found here. On the webpage you can see three fields that are important for knowing where this unit has gone. “Current: No”, “Status: Obsolete”. The comments field answers the question finally: “Name superseded by Rocksberg Greenstone, Bunya Phyllite, and Neranleigh-Fernvale Formation.”.

What this means is that the one description of Brisbane Metamorphics did not reflect the ages, genesis, and history of these three rock units.  You will get more information about the structural history and rock composition if you deal with the new units individually. Indeed, Holcome (1977) discusses the constituents of the Brisbane Metamorphics at length and notes that the Rocksberg Greenstone, Bunya Phyllite and Neranleigh-Fernvale Group are the constituents of the Brisbane Metamorphics but these are substantially different in terms of formation, metamorphic history and exposures. In northern New South Wales some of these units are present as part of what is called the Beenleigh Block (Holcome (1997).

There are many cases where geological units have been renamed or reclassified after further research has been done. This is no different to any other area of science. The only challenge is keeping up with the change.

References/bibliography:

*Holcome, R.J. 1977. Structure and tectonic history of the Brisbane Metamorphics in the Brisbane Area. Journal of the Geological Society of Australia. V24.
*NSW National Parks and Wildlife Service. January 2011. Julian Rocks Nature Reserve: Plan of Management.
*Specht, R.L. , Specht, A. 2007. Pre-settlement tree density in the eucalypt open-forest on the Brisbane Tuff. Proceedings of the Royal Society of Queensland 113 p9-16